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Abstract— This paper presents a novel control architecture
for hybrid stiff and compliant control for minimally invasive
surgery which satisfies the constraints of zero lateral velocity at
the entry point for serial manipulators. For minimally invasive
surgery it is required that there is no sideways motion at the
point where the robots enter the abdomen. This is necessary
to avoid any damage to the patient’s body when the robot
moves. We solve this at a kinematic level, i.e., we find a
Jacobian matrix that maps the velocities in joint space to the
end-effector velocities and at the same time guarantees that
certain velocities at the entry point are zero. Because the new
velocity variables are defined in the end-effector workspace we
can use these for hybrid motion/force control. The approach
is verified experimentally by implementing hybrid stiff and
compliant control of the end effector and we show that the
insertion point constraints are always satisfied.

I. INTRODUCTION

Minimally invasive telesurgical systems allow for surgical
procedures to be performed with less patient trauma and risk,
in addition to shorter patient recovery times. This is achieved
by inserting the surgical instruments into the body through
small insertion points called trocars, often together with a
camera for visual feedback. Such systems thus provide a
safe environment for surgeons to perform telesurgery, either
in-house or remotely through a communication channel [1].
Robot-assisted telesurgical systems also allow for more dex-
terous surgical procedures than classic laparoscopic surgery
in addition to enhanced overall performance, for example by
scaling and filtering out hand tremor [2].

When inserting the robotic tool into the patient it is crucial
to avoid any lateral motion. This can be obtained in one of
three ways: i) The remote center of motion (RCM) can be
obtained mechanically by using a parallel device that keeps
the RCM fixed, such as in the DaVinci robot from Inuitive
Surgical [1]. This is a safe solution, but not flexible when
it comes to changing the RCM during operation. ii) The
RCM can also be implemented using two passive joints that
form a universal joint together with four active joints that
generates the desired 4-DoF motion. iii) Finally a software-
based RCM can be implemented by controlling the robot so
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that the lateral motion at the trocar is eliminated. This is the
approach discussed in this paper.

Because the surgical instruments are located very close to
the patient’s internal organs, tissues, and bones, a compliant
behavior at the end effector is desirable to avoid inflicting
damage on the patient. On the other hand, if the surgeon
is to perform interaction tasks such as cutting and suturing,
a compliant behavior is not appropriate, at least for some
directions of the end-effector workspace. For cutting pro-
cedures, for example, the surgeon should be able to move
the knife in the cutting direction and also apply forces
in this direction. In other directions such as the directions
orthogonal to the motion, one might opt for a guided motion
and compliant behavior in order to keep the surgeon on the
right trajectory, or to protect other internal organs. These
requirements call for a hybrid control with stiff motion
control in some directions of the end-effector workspace
and compliant behavior in other directions. Such a control
scheme is only possible when the state space is written in
terms of the end-effector variables, which is not straight
forward when constraints are present in the kinematic chain.

Hybrid control in the end-effector space has been studied
in detail by many authors [3]. Mason [4] introduced natural
constraints—which correspond to the degrees of freedom
where the environment imposes position or force constraints
on the end-effector motion— and artificial constraint—which
are the constraints imposed by the controller. Because the
natural constraints are orthogonal to the artificial constraints,
the end-effector space can be divided into two subspaces
where only the latter can be controlled. For an appropriate
choice of reference frame, selection matrices can be defined
for hybrid position/force control [5], [6], [7]. A similar but
more geometric approach was presented in Lipkin and Duffy
[8] where the concept of reciprocity is used to define the two
subspaces.

In the setting of minimally invasive surgery Deal and
Newman [9], [10] present a method for stiff control at the
entry point and compliant control at the end effector. A
combination of hybrid force/position control and Natural
Admittance Control (NAC) is used to satisfy the portal con-
straints and at the same time allows for compliant behavior at
the end-effector. The resulting controller divides the control
efforts into a 2-DoF stiff control at the entry point and a 4-
DoF NAC controller at the end effector. The approach thus
allows for a stiff entry point and a compliant behavior at
the end effector. The approach can not, however, be directly
extended to also allow for hybrid control of the 6-DoF end-
effector motion, as all the degrees of freedom at the end-
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effector will have a compliant behavior. In this paper we
propose a novel approach which in addition to satisfy the
entry point constraints also allows for hybrid control of the
end-effector, i.e., some directions can take on a compliant
behavior while others are stiff/position controlled.

The constraints imposed by the entry point are often
referred to as the Remote Center of Motion (RCM). Several
researchers have addressed the problem of imposing the
RCM constraints on the robot motion by modifying the
controller. Early results solved the motion constraints as an
optimization problem, for example in Funda et al. [11] and
Li et al. [12]. In Ortmaier and Hirzinger [13] the RCM
kinematics is derived and used to estimate the position of
the entry point for a robot with passive joints. The passive
joints guarantee that no forces are exerted to the entry point.
In Locke and Patel [14] the kinematic model is used to derive
an optimization technique that allows isotropy of the surgical
tool to be evaluated subject to the RCM constraint. Trocar
kinematics is also discussed in Lenarčič and Galletti [15].

Azimian et al. [16] uses the concept of task priority and
restricted Jacobian to derive the constrained motion in terms
of the trocar and manipulator geometry. The end-effector
motion is found in the standard way from the manipulator
Jacobian, which is taken from the null space of the constraint
Jacobian of the entry point. The constraint Jacobian is found
in the normal way by the mapping from the joint space
velocities to the lateral linear velocities of the RCM point.
The constraints at the insertion point are given first priority
and the end-effector motion is given a secondary priority as
this is taken from the null space of the first Jacobian [17].
The approach depends on the kinematics of both the robotic
manipulator and the trocar.

In this paper we take a somewhat different approach in that
we impose the constraints on the velocity twist of the last link
of the robot directly and rewrite the mapping from the end-
effector twists to the joint velocities so that it is guaranteed
to satisfy the RCM constraints. The main advantage of
the proposed approach is that the constrained system can
be treated in the same way as a standard unconstrained
manipulator simply by replacing the standard Jacobian with
the constrained Jacobian, and we can therefore apply any
conventional control scheme used for unconstrained robots.
In other words, when it comes to control there is no
difference between constrained and unconstrained robotic
manipulators, except for the Jacobian. We can for example
formulate the control problem in the end-effector space using
standard control laws, including hybrid control, and map
these to the joint velocities, which are effectuated in the
normal way by the low-level robot controller. We thus obtain
a formulation that is independent of the robot kinematics and
allows for simple implementation as we can use existing low-
level controllers both for the robot and the end-effector.

II. SYSTEM OVERVIEW AND PROBLEM FORMULATION

The system discussed in this paper consists of a standard
or customized 6-DoF robotic manipulator with a shaft, i.e., a
thin long link used for inserting the end effector into the body
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Fig. 1. The robotic setup discussed in this paper. The shaft is inserted into
the body through a trocar at Fp. The motion spaces of the different frames
are subgroups of SE(3) defined by linear motion R, circular motion S, and
the sphere S2.

through the trocar. At the end of the shaft there is a wrist with
two or more additional degrees of freedom and a tool. At the
insertion point we will require that the sideways velocities are
eliminated to prevent the robot from damaging the patient’s
tissue. This requirement imposes a 2-DoF constraint on the
shaft so that the end of the shaft has 4 DoF of motion.
The additional degrees of freedom in the wrist give the end
effector a full 6-DoF motion. Most endoscopic wrists, such
as the one used in the Intuitive Surgical’s da Vinci robots,
have 3 degrees of freedom. This paper is not concerned with
redundancy, so we consider the case where the wrist has 2
DoF. The system setup and the configuration spaces used in
this paper are shown in Fig. 1.

The problem considered consists of maintaining a stiff
control of zero velocity at the insertion point while allowing
for a combination of stiff and compliant control at the
end effector. Several surgical tasks require both position
and force control in the different directions of the end-
effector coordinate frame. Other tasks do not require the
specifications of all the 6 DoF of the configuration space so
the remaining directions are often given a compliant behavior
to prevent the tool from damaging tissues or organs. This
requires a well defined workspace representation that can
be used to divide the workspace into suitable orthogonal or
reciprocal spaces.

In this paper we propose a new approach where the inser-
tion point constraints are taken care of at a kinematic level
and satisfied by defining a constrained Jacobian matrix that
guarantees that the constraints are satisfied, independently
of the commanded master reference. The Jacobian gives the
mapping from the joint space to the end-effector space on
which hybrid position/force control can be applied in the
normal way.

III. CONSTRAINED KINEMATICS

In this section we derive the kinematics of the robotic
system when the kinematic constraints at the entry point are
satisfied.
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A. End-effector Motions

We will attach a frame Fr to the last link of the 6-
DoF robotic manipulator, as illustrated in Fig. 1. The body
velocities of this frame with respect to a fixed inertial frame
F0 is represented by

V B
0r =

[
vrx vry vrz ωr

x ωr
y ωr

z

]T
. (1)

The robot velocities can be found from the joint velocities by
the Jacobian in the standard way as V B

0r = JB
r (qr)q̇r where

JB
r (qr) is the geometric Jacobian relating the joint velocities

and the body twist of the last link of the robot.
One of the control objectives is to maintain zero transla-

tional velocity at the entry point. We will thus also define a
reference frame Fp at this point with body velocity twist

V B
0p =

[
vpx vpy vpz ωp

x ωp
y ωp

z

]T
. (2)

The reference frames are illustrated in Fig. 1. The relation
between the velocity at the last link of the robot and the
entry point, i.e., the point prp =

[
0 0 a

]T
in frame Fr,

is given by the simple relation


vpx
vpy
vpz


 =



vrx
vry
vrz


+



ωr
x

ωr
y

ωr
z


×



0
0
a




=




vrx + aωr

y

vry − aωr
x

vrz



 (3)

while the angular velocities are identical: ωB
0p = ωB

0r.
If we assume that the requirement of zero velocity at the

insertion point is satisfied, for example by a simple position
control law or a physical constraint, we see from Equation
(3) and the properties of rigid bodies that the velocity at this
point can be written in terms of the velocities at Fr as

V B
0p =

[
0 0 vrz ωr

x ωr
y ωr

z

]T
. (4)

At the end of the shaft we attach the wrist frame Fw. The
wrist frame has only four degrees of freedom and can thus
be written in terms of the velocities at the last robot link (or
alternatively the entry point) as

V B
0w =




vwx
vwy
vwz
ωw
x

ωw
y

ωw
z



=




0 0 b 0
0 −b 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







vrz
ωr
x

ωr
y

ωr
z


 . (5)

Finally the velocity of the end-effector frame Fe is found
by adding the velocity of the wrist frame with respect to the
inertial frame to the velocity of the end effector with respect
to the wrist frame [18]:

V B
0e = Adgew V B

0w + V B
we. (6)

To simplify the expressions we assume that the last two joints
rotate about the x-axis and we set l8 = 0. The body velocity

at the end effector then becomes [19]

V B
0e =




bωr
y + l7 cos q7ω

r
y + l7 sin q7ω

r
z

sin q78v
r
z − (b cos q78 + l7 cos q8)ω

r
x − l7 cos q8q̇7

cos q78v
r
z + (b sin q78 + l7 sin q8)ω

r
x + l7 sin q8q̇7

ωr
x + q̇7 + q̇8

cos q78ω
r
y + sin q78ω

r
z

− sin q78ω
r
y + cos q78ω

r
z




(7)
where we have used that Rew = Rer and q78 = q7 + q8. For
most telesurgical systems the wrist is close to a spherical
joint so we can assume that l7, l8 << b and we get

V B
0e ≈




bωr
y

sin q78v
r
z − b cos q78ω

r
x

cos q78v
r
z + b sin q78ω

r
x

ωr
x + q̇7 + q̇8

cos q78ω
r
y + sin q78ω

r
z

− sin q78ω
r
y + cos q78ω

r
z



. (8)

B. Constrained Jacobian Matrix

With the formulation above we have assumed that the
lateral velocity at the entry hole is zero. To guarantee this,
we need a design that satisfies this requirement and these
variables therefore need to be included in the state space
representation. The state space can then be written as a vector
in R

8:

vp =
[
vpx vpy vpz ωp

x ωp
y ωp

z q̇7 q̇8
]T

. (9)

This choice of state variables is very useful when controlling
the velocity at the entry point (the two first variables) to zero.
It is also convenient because it can be found directly from
the robot kinematics (first 6 variables) and the end-effector
kinematics (last 2 variables), i.e.,

vr =
[
vrx vry vrz ωr

x ωr
y ωr

z q̇7 q̇8
]T

(10)

and we can find Equation (9) directly from Equation (3).
On the other hand, the end-effector velocities written in

this way are not particularly useful because these are not the
velocities that we want to control. A more appropriate choice
of state variables for our problem is therefore found as

ve =

[
vpp
V B
0e

]
=

[
vpx vpy vex vey vez ωe

x ωe
y ωe

z

]T
.

(11)
This representation of the velocity vector is suitable for both
stiff control at the entry point and hybrid control of the end
effector. The velocity vector ve relates to the velocities vr

by

ve = Jerv
r. (12)

Note that this is a mapping from one representation using
body velocities to another representation also in body veloc-
ities. The coordinate transformation matrix Jer can be found
as in (13).
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


vpx
vpy
vex
vey
vez
ωe
x

ωe
y

ωe
z




=




1 0 0 0 a 0 0 0
0 1 0 −a 0 0 0 0
1 0 0 0 (a+ b) + l7 cos q7 l7 sin q7 0 0
0 cos q78 sin q78 −(a+ b) cos q78 − l7 cos q8 0 0 −l7 cos q8 0
0 − sin q78 cos q78 (a+ b) sin q78 + l7 sin q8 0 0 l7 sin q8 0
0 0 0 1 0 0 1 1
0 0 0 0 cos q78 sin q78 0 0
0 0 0 0 − sin q78 cos q78 0 0







vrx
vry
vrz
ωr
x

ωr
y

ωr
z

q̇7
q̇8




(13)

The mapping between the workspace velocities and the
joint velocities are found by the geometric Jacobian JB

r :

[
vpp
V B
0e

]
=

[
Jer,a 02×2

Jer,1 Jer,2

] [
V B
0p

q̇w

]

=

[
Jer,a 02×2

Jer,1 Jer,2

] [
JB
r 0
0 I

] [
q̇r
q̇w

]

=

[
Jer,aJ

B
r 02×2

Jer,1J
B
r Jer,2

] [
q̇r
q̇w

]
. (14)

We will denote this matrix Jeq and write

ve = Jeq q̇. (15)

C. Minimal Representation with Insertion Point Constraints

From (13) we see that the velocities at the entry point can
be written in terms of the robot velocities as

vpx = vrx + aωr
y (16)

vpy = vry − aωr
x (17)

and the constraint of zero velocity can therefore be cast into
the following simple form

vrx = −aωr
y (18)

vry = aωr
x (19)

where we need to know the distance from the last link of the
robot to the entry point. We can incorporate these constraints
in the kinematics (13) by introducing new variables v1 and
v2 such that

vrx = v1 ωr
y = −

1

a
v1 (20)

vry = v2 ωr
x =

1

a
v2. (21)

Substituting this into (13) and eliminating the entry point
velocities that are now known to be zero gives Equation
(22). This is suitable for workspace control and at the same
time guarantees that the entry point velocity constraints are
satisfied. In the controller v1 and v2 are realized through
the expressions found in Equations (20) and (21). We will
denote the matrix in Equation (22) that gives us the minimum
representation of the end-effector workspace as Jm

er and this
important transformation as V B

0e = Jm
erv

r
m.

V B
0e,d

R
6

J−1

eq

q̇d

R
8

ė

R
8

Controller
u

R
8

Robot
q̇

R
8

+

−

Fig. 2. One example of how the Constraint Jacobian Jeq can be used to
obtain both control objectives. Note that the controller can be implemented
at joint level in the normal way.

IV. HYBRID STIFF AND COMPLIANT CONTROL SCHEMES

In the previous section we found a state space represen-
tation well suited for implementing a hybrid control scheme
in the end-effector space. We obtained this by the one-
to-one mapping in (22) which gives the constraint robot
motion from the desired end-effector motion by imposing
the entry-point constraints. In this section we will study
different approaches that can be used to obtain the required
characteristics at the end-effector for which the entry-point
constraints are satisfied. Common for all the formulations is
that we define the task specifications in the new workspace
variables, and use the transformations derived in the previous
section to obtain the corresponding joint motions.

Our objective is to allow for both compliant and stiff
control when the end-effector is in contact with the environ-
ment. At the same time stiff control is required at the entry
point, which is solved at a kinematic level, i.e., through the
Constraint Jacobian. Following the seminal work of Mason
[4] and Craig and Raibert [5] we will define orthogonal
workspaces for position and force control of the end effector.
Mason [4] represented physical constraints by zero velocity
and zero force in certain directions of the end-effector
workspace and denoted these as natural constraints. Then
the artificial constraints, or control, were defined subject to a
certain control objective so that the natural constraints were
always satisfied. The physical and artificial constraints are
represented in terms of selection matrices Sp and Sf where,
for a suitable choice of state space, we can choose Sp as a
diagonal matrix representing the directions with free motion,
and thus force cannot be applied, and Sf as representing the
directions with constrained motion, which allow for force
control.

A. Position Control

We will first look at a simple position control, i.e., we want
the end effector to follow a master manipulator, in addition to
satisfying the constraints at the insertion point. Stiff control
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


vex
vey
vez
ωe
x

ωe
y

ωe
z



=




−
1

a
(b+ l7 cos q7) 0 0 l7 sin q7 0 0

0 −
1

a
(b cos q78 + l7 cos q8) sin q78 0 −l7 cos q8 0

0 1

a
(b sin q78 + l7 sin q8) cos q78 0 l7 sin q8 0

0 1

a
0 0 1 1

−
1

a
cos q78 0 0 sin q78 0 0

1

a
sin q78 0 0 cos q78 0 0







v1
v2
vrz
ωr
z

q̇7
q̇8



. (22)

of this kind is necessary in many applications where the end
effector is to follow a reference path as closely as possible.
The approach described here will also serve as a benchmark
for the approach presented in the next section. With this
approach we do not want to control the interaction forces, but
rather force the end-effector to follow the position dictated
by the operator. If natural constraints are present, this will
be communicated to the operator through force feedback.
Position control thus fits into the framework described above
by choosing Sp = I and Sf = 0.

The control law can also be derived in joint space as shown
in Fig. 2. First write the manipulator dynamics as

Mq(q)q̈ + Cq(q, q̇)q̇ = τ. (23)

Here Mq is the robot inertia matrix, Cq(q, q̇) represent the
Coriolis and centripetal forces, τ is the joint torques, and

Mq(q) = J−T

eq MJ−1

eq

Cq(q, q̇) = J−T

eq

(
C −MJ−1

eq J̇eq

)
J−1

eq

where M and C represent the dynamics in ve. In this case
we use the Jacobian that we found in (15) to obtain the
dynamics in joint variables.

An inverse dynamics control law is then given by

τ = Mq(q)y (24)

where we choose y as

y = q̈d +KD(q̇d − q̇) +KP (qd − q) (25)

which guarantees that the error converges to zero [20]. Note
that this control law is a kind of computed-torque control
method. We see that the Constraint Jacobian Jeq allows us
to reformulate the control problem into a standard control law
in joint variables which guarantees that the insertion point
constraints are satisfied (solved at a kinematic level) and that
the master reference is followed (solved by the controller
(24-25)).

A joint-space impedance control can also appear in the
wrist control with a modification of Eqs. (24-25). Introduce
the control law

τ = Mq(q)y + JT
F F −Mq(q)F (26)

where JT
F is the Jacobian with respect to the force-sensing

position. In addition to the computed-torque term, there is
one force-compensating term and one term that provides
impedance control with a computed-torque-like impedance
dynamics in joint space:

Mq(q)(¨̃q +KD
˙̃q +KP q̃ − F ) = 0. (27)

Passivity can be shown for the mapping from F to ˙̃q where
q̃ = qd − q.

B. Impedance Control with Insertion Point Constraints

Impedance control for minimally invasive surgery is chal-
lenging because the impedance control needs to be imple-
mented in the end-effector space while the constraints on the
robot motion needs to be so that the velocities at the insertion
point are zero. One solution to this problem is shown in Fig.
3. The desired motion is given by the master velocities V B

0e,d.
For impedance control we define a compliant frame Fc which
gives the position and orientation of the end effector when
it is in contact with the environment, i.e., the deviation from
the desired frame Fd due to the sensed end-effector forces
[3]. When the end effector is in contact with the environment
it will thus follow the frame Fc which relates to the desired
trajectory frame Fd by

Mcp̈dc +Dcṗdc +Kcpdc = Fe (28)

which gives a new desired motion represented by the frame
Fc whenever the robot is in contact with the environment.

We also need to guarantee that the velocities at the
insertion point are zero. This is guaranteed by introducing the
variables v1 and v2 as in Equation (22). The matrix (Jm

er )
−1

thus gives us the motion of the manipulator arm for which
the constraints are satisfied. This is given by the four degrees
of freedom velocity vector vr =

[
v1 v2 vrx ωr

z

]T
. The

six degrees of freedom motion of the manipulator arm is thus
found by




vrx
vry
vrz
ωr
x

ωr
y

ωr
z



=




1 0 0 0
0 1 0 0
0 0 1 0
0 1

a
0 0

−
1

a
0 0 0

0 0 0 1







v1
v2
vrz
ωr
z


 . (29)

We now give this as input to the robot arm, together with
the wrist motion, also found by the inverse of (22), and we
separate the feedback loops for the manipulator arm and the
wrist, as shown in Fig. 3.

We note that we have obtained compliant control in
the end-effector workspace and we also guarantee that the
insertion point constraints are satisfied, as required. If hybrid
control is desired, we introduce selection matrices Sp and
Sf in the normal way in the hybrid impedance controller
in Fig. 3. Note also that we only use the velocity variables
in the controller. This is not a problem in teleoperation, as
the position variables are normally compensated for by the
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Fig. 3. Hybrid control scheme with insertion point constraints taken care of at a kinematic level.

operator, and we are mainly interested in following the veloc-
ity reference. In the impedance controller, however, we need
both the acceleration and position variables. We therefore
need to include a memory in the impedance controller so
that the position can be recovered whenever spring forces
are required.

V. EXPERIMENTS

In this section, the proposed control scheme is tested
experimentally. To evaluate the applicability of the proposed
method to robotic telesurgery, a teleoperation system is
implemeted. For simplicity, we consider the wrist as the end
effector which means the wrist does not have any DoF.

A. Experimental Set-up

The experimental set-up consists of a master device and
a slave robot. The Omega 7 haptic device from Force
Dimension which is a parallel haptic device is used as the
master device. An ABB IRB140 industrial robot with a
force/torque sensor at the tip, the 100M40 from JR3, is used
as the slave robot.

The proposed control scheme is implemented by MAT-
LAB Simulink and Real-Time Workshop. Input and output
signals are received and sent through Ethernet from/to master
and slave devices. The controller takes velocities and posi-
tions of the master device and force signals of the slave robot
as inputs and generates desired joint velocities of the slave
robot as output signals. The slave robot is controlled by its
internal controller to follow the desired motions of each joint,
details can be found in [21].

B. Experimental Results

Several experiments were performed including a stiff posi-
tion control and an impedance control. In Fig. 4, an image is
created by overlaying the motions of the slave robot during
the experiments. The insertion point is virtually imposed in
the middle of end effector and it can be recognized in Fig.
4. For clear illustration of the velocity constraints on the
insertion point, we draw the traces of the end-effector of the
experiment in Fig. 5. The color of the end-effector changes
from gray to grayish red-violet with time. It is clearly shown

Fig. 4. Image overlay of the slave robot during the experiment.

that the proposed control scheme satisfies the zero-velocity
constraints on the virtual insertion point. When noise is
removed, the lateral motions that we measure at this point is
zero, as expected.

We have also conducted experiments with impedance
control. For clear illustration of the impedance control, the
impedance controller is implemented along with the insertion
direction which is the z-axis in robot frame and the inputs
of the control scheme, V B

0e,d, are also transformed to robot
frame Fr. To see the compliance along the z-axis, positions
of the master device and the slave robot are drawn in Fig.
6. The contact along the z-axis has a duration of about 29s.
As a result of the impedance control, we see that the desired
velocities of the slave robot are modified, as expected. It
is noteworthy that the impedance controller is implemented
in priori to the kinematic constraints as described in Fig. 3
which enables us to restrict the velocities at the insertion
point.

VI. CONCLUSION

In this paper, we propose a novel control architecture for
hybrid stiff and compliant control for minimally invasive
surgery which satisfies the constraints of zero lateral velocity
at the entry point. These constraints are handled on a
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Fig. 5. Traces of the end effector during the experiment, illustrated in
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Fig. 6. Z-axis positions of the master device and the slave robot in robot
frame Fr . Note that compliant motions are allowed through the proposed
control scheme.

kinematic level by a Jacobian matrix that maps the velocities
in joint space to the end-effector velocities and at the same
time guarantees that the velocities at the entry point are zero.
Both stiff position control and hybrid stiff/compliant control
can be easily implemented in the end-effector workspace.
The proposed approach is verified through experimental
verification via stiff position control and hybrid control and
we show that the insertion point constraints are satisfied in
both cases.
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