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Abstract— The Segmented Spring-Loaded Inverted Pendu-
lum model is analysed, and it is shown that it exhibits walking
gait. We propose a control architecture that exploits control
of the knee stiffness to provide robustness of the system with
respect to changes in gait. This controller is extended for
a realistic bipedal robot model that uses variable stiffness
actuators to control the knee stiffness. The variable knee
stiffness is then used to stabilise the system into a walking
gait and to inject energy losses generated by friction and foot
impacts.

I. INTRODUCTION

The high performance of human walking, which combines
robustness with energy efficiency, has long been the inspi-
ration of efforts to design robots based on the principle of
passive dynamic walking. In contrast, most existing systems
are either energy efficient or robust. Robots based on the
principle of passive dynamic walking show high energy
efficiency, but are not robust against external disturbances
[1]. Highly controlled systems – often based on the concept
of Zero Moment Point – are robust at the exchange of energy
efficiency [2].

Humans walking on flat terrain can be accurately mod-
eled using inverted spring-mass systems. The Spring-Loaded
Inverted Pendulum (SLIP) has been shown to exhibit au-
tonomous stable limit cycle walking gait [3] strongly com-
parable to human walking in terms of hip trajectory, single-
and double-support phases and ground contact forces [4].

In this work, we focus on the Segmented Spring-Loaded
Inverted Pendulum (S-SLIP) model, which has segmented
legs with torsional stiffness knees. This is more realistic
when compared with existing robot designs, which use knees
and leg retraction to avoid food scuffing. It has been shown
that given proper initial conditions, the uncontrolled S-SLIP
model exhibits autonomous stable limit cycle running gait
[5]. However, the model also shows passive limit cycle
walking gait, similar to the SLIP model.

We develop a control strategy that uses variable knee
stiffness to stabilise the system with respect to changes of
walking gaits, characterised by different limit cycles. The
performance of this strategy is shown by a simulated S-SLIP
system with controlled torsional knee stiffness that switches
between two gaits with a large forward velocity difference.
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Fig. 1. The S-SLIP model consists of a hip point mass, with two massless
segmented legs with links of length λ1 and λ2. In the knees with angles
β1 and β2 there are torsional springs with stiffness ζ0. The legs touch the
ground at the foot contact points c1 and c2.

In the context of applying this control strategy to bipedal
robots, a realistic model is designed that uses variable
stiffness actuators (VSAs) to control the knees. The control
is based on the developed strategy for the controlled S-SLIP
model, extended with additional components to facilitate leg
swing and leg retraction, which arise due to the additional
dynamics of this model. A reference gait is obtained by using
this model with constant knee stiffness. The variable knee
stiffness is then used to stabilise the system into this gait and
to inject the energy lost due to friction and foot impacts. It
is shown that this results in a stable limit cycle walking gait.

The remainder of this paper is outlined as follows. Sec-
tion II describes the S-SLIP model and its dynamics. The
proposed control design for the S-SLIP model is described
in Section III, with simulations in Section IV. The bipedal
robot model is presented in Section V, its control in Section
VI, and simulations in Section VII. Conclusions and recom-
mendations for future work are presented in Section VIII.

II. SEGMENTED SPRING-LOADED INVERTED PENDULUM

In this section, the S-SLIP model is described. We describe
the configuration manifold and conditions for state transition.
The system dynamics are derived and we conclude with S-
SLIP limit cycle gaits in a normalised description.

A. Configuration Manifold & State Transitions

The Segmented Spring-Loaded Inverted Pendulum (S-
SLIP) model is shown in Fig. 1. It consists of a hip point
mass m, connected to two massless segmented legs, each
composed of two links with upper leg length λ1 and lower
leg length λ2. Between the links there are torsional springs
with stiffness ζ0, and the knee angles are denoted by β1 and
β2. The foot contact positions are denoted by c1 and c2.
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Fig. 2. A single step of the S-SLIP model, shown at touch-down. The
leading leg is at its knee rest angle β0. The virtual leg from hip to foot
contact (dashed line) is at its rest length L0 and at an angle α0 with the
ground plane. The step starts and ends at VLO and has length Lg . The
virtual leg lengths are defined as L1 and L2. Touch-down and lift-off occur
when the hip mass crosses the touch-down height ytd.

The configuration of the system is given by the position
of the hip mass as (x, y) =: q ∈ Q, and its velocity by
q̇ ∈ TqQ, the tangent space to Q at q. The system state
is then given as x := (q,p), with the momentum p :=
(px, py) = M q̇ and the mass matrix M = diag(m,m).

As in [3] and [6], a single step is defined as a trajectory
q(t) ∈ Q that starts with the system in Vertical Leg
Orientation (VLO), where the hip mass is exactly above the
supporting leg and c1 = x. The step ends when the system
again reaches VLO (see Fig. 2), and the role of the legs
is then exchanged. We define the gait length Lg := x(T ),
where T is the gait time period, i.e. q(t) = q(t + T ).

Every step consists of two distinct phases, i.e. single-
support (SS) and double-support (DS) during which either
one or two legs are in contact with the ground, respectively.
The SS→DS transition occurs when the hip mass reaches the
touch-down height ytd. The touch-down height corresponds
to the angle-of-attack α0, at which the virtual leading leg
(from hip to foot contact, dashed lines in Fig. 2) is at an
angle α0 with the ground so that y = ytd := L0 sin(α0). At
this moment the leading leg is at its rest length L0 and the
knee is at its rest angle β0:

L0 =
√

λ2
1 + λ2

2 − 2λ1λ2 cos (β0) (1)

At the moment of touch-down the leading foot contact
position is calculated, as c2 = x + L0 cos(α0).

Conversely, the DS→SS transition occurs when the trailing
virtual leg reaches its rest length. At this moment foot contact
c2 is relabeled as c1 to correspond to the notation used
during SS phase. The swing leg disappears, and reappears
at the subsequent moment of touch-down, which is possible
because the leg is massless. During SS we set the swing leg
knee to its rest angle, i.e. β2 ≡ β0 and the leg exerts no
force.

We can now define two subsets of Q which correspond to
the single- and double-support phases respectively:

QSS = {q ∈ Q | y > ytd , y < L0}
QDS = {q ∈ Q | y < ytd , y > 0}

(2)

where the conditions y < L0 and y > 0 assure to avoid the
remaining cases, i.e. lift-off and fall respectively. Note that
for a walking gait q ∈ QSS ∪QDS . 1

During contact, the length Li of each leg is given by

Li =
√

(x − ci)
2 + y2 , i ∈ {1, 2} (3)

with corresponding knee angle βi

βi = cos−1

(
λ2

1 + λ2
2 − L2

i

2λ1λ2

)
, i ∈ {1, 2} (4)

B. System Dynamics

To derive the dynamic equations for the system, we use
the Hamiltonian approach. The kinetic energy function is
defined as K = 1

2p
T M−1p with M := diag(m, m) and the

potential energy function as

V = mgy +
1
2
ζ0 (β0 − β1)

2 +
1
2
ζ0 (β0 − β2)

2

where g is the gravitational acceleration. The dynamic equa-
tions are then defined by the Hamiltonian energy function
H = K + V as

d
dt

[
q
p

]
=

[
0 I
−I 0

] [
∂H
∂q
∂H
∂p

]
(5)

where I is the identity matrix. Note that a solution q(t) of
(5) is of class C2, due to the non-differentiability of the leg
forces at the moment of transition between the single- and
double-support phases.

C. S-SLIP Limit Cycle Gaits

A limit cycle gait is a periodic walking gait, which returns
to the same state periodically. From this point on, we refer
to limit cycle walking gaits of the S-SLIP model as natural
gaits. In the description of natural gaits, we use the state at
VLO as initial conditions, i.e. x0 = (q,p)0 = (x, y, px, py)0,
and, during walking in natural gait, the system returns to this
state at every VLO. Since we can take at every VLO x ≡ 0,
a natural gait Σ can then be fully described as

Σ = (α0, ζ0, L0,m, β0, y0, px,0, py,0) (6)

in which we consider m and L0 fixed parameters for a given
system. Note that it is not possible to use the total system
energy H to uniquely describe a natural gait, because energy
can be stored in either potential (leg compression, hip height)
or kinetic energy.

As natural gaits exist for ranges of parameters, there
often exists a range of natural gaits that achieve a desired
forward velocity. In Fig. 3, this corresponds to multiple
combinations of (α0, ζ0, β0) that result in the same average
forward velocity ẋavg . Conversely, a single set (α0, ζ0, β0)
can often achieve a range of average forward velocities
(vertical bar in Fig. 3). Given these parameters, a natural
gait can be found by finding an initial state x0 to which the
system returns at every VLO.

1Lift-off is also possible while q ∈ QSS ∪ QDS . We take care of this
in simulation by checking L1 ≤ L0 ∨ L2 ≤ L0, i.e. at least one leg is in
contact with the ground.
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Fig. 3. Average forward velocities ẋavg of natural gaits for different
values of (α0, ζ0, β0). Note that for given (α0, ζ0, β0), the average forward
velocity is proportional to the system energy H .

D. Normalised Notation of S-SLIP Limit Cycle Gaits

The torsional knee stiffness ζ0 and energy H can be
normalised in dimensionless form as

ζ̃ =
ζ0

mgL0
H̃ =

H

mgL0
(7)

If we normalise x as x̃ := (q̃, p̃) = (x̃, ỹ, p̃x, p̃y) with

x̃ =
x

L0
ỹ =

y

L0
p̃x =

px

m
√

L0g
p̃y =

py

m
√

L0g
(8)

which are all dimensionless quantities, and use (7), we obtain
a fully normalised unique description Σ̃ of a natural gait:

Σ̃ =
(
α0, ζ̃, β0, ỹ0, p̃x,0, p̃y,0

)
(9)

The gait trajectory can then be found by solving (5) for
Σ̃. Using this description, equal gaits on different S-SLIP
systems now result in the same normalised state trajectory
x̃(t) = (q̃(t), p̃(t)). Similarly to p̃x, p̃y , the velocities are
normalised as

˙̃x =
ẋ√
L0g

˙̃y =
ẏ√
L0g

(10)

Note that the normalisation ˙̃x is the Froude number Fr [8],
[9], used to compare the relative walking speeds of systems
with different leg lengths.

III. S-SLIP CONTROL DESIGN

The control design of the controlled S-SLIP model is
inspired by [6], in which the stiffness of the legs of the SLIP
model is actively controlled and the rejection of external
disturbances to the system is significantly increased.

Analogously, for the S-SLIP model, the torsional knee
stiffness can be controlled. The knee stiffnesses in Fig. 1
are replaced by ζi = ζ0 + ui, i ∈ {1, 2}. The control inputs
ui are restricted to subsets Ui = {ui ∈ R|0 < ζ0+ui < ∞},
such that the result is a meaningful stiffness value.

We intend to control the system towards a reference gait
Σ̃ with normalised state trajectory x̃o(t) such that ui →
0, i ∈ {1, 2} as t → ∞. To change gait we can then
construct x̃o(t) such that it converges from some reference
gait Σ̃i to another Σ̃j . However, during single-support phase
the system has only one control input and x̃o(t) cannot
be tracked exactly, which may lead to instability as the

system lags behind the reference. As x̃ was identified to
be a periodic variable and required to be monotonically
increasing in time, the references are reparametrised on x̃.
The references ỹ∗(x̃), ˙̃x∗(x̃) are then sufficiently described
as

ỹ∗(x̃) = ỹo(x̃) ˙̃x∗(x̃) = ˙̃xo(x̃) (11)

However, as a general analytic expression for the spring-
loaded pendulum does not exist [10], a Fourier series expan-
sion approximation of the numerical solution is used. We
extend (5) to obtain

d
dt

[
q
p

]
=

[
0 I
−I 0

][
∂H
∂q
∂H
∂p

]
+

[
0
B

]
u (12)

with u = [u1, u2] the controlled part of the knee stiffness.
The input matrix B is given by

B =

[∂ϕ1
∂x

∂ϕ2
∂x

∂ϕ1
∂y

∂ϕ2
∂y

]
(13)

with
ϕi =

1
2

(β0 − βi)
2
, i ∈ {1, 2} (14)

calculated from (3)–(4). To formulate the control strategy,
we rewrite (12) as

ẋ = f(x) +
∑

i

gi(x)ui (15)

and then define error functions h1 and h2 as

h1 = y − y∗

h2 = ẋ − ẋ∗ (16)

Due to only one control input being available during single-
support phase, the system is not always fully controllable
and we choose to:

1) Control the hip height error h1 during SS around VLO
2) Control the velocity error h2 during SS just after touch-

down and just before lift-off.
3) Control both h1 and h2 during DS

We choose to control the velocity error just after lift-off and
just before touch-down to allow generation of the required
push-off for energy injection.

The control solution is then given as follows.
• For q ∈ QSS and |x − c1| ≤ ϵ:

u1 =
1

Lg1Lfh1

(
−L2

fh1 − κdLfh1 − κph1

)
u2 ≡ 0

(17)

• For q ∈ QSS and |x − c1| > ϵ:

u1 =
1

Lg1h2
(−Lfh2 − κvh2)

u2 ≡ 0
(18)

• For q ∈ QDS :[
u1

u2

]
= A−1

[
−L2

fh1 − κdLfh1 − κph1

−Lfh2 − κvh2

]
(19)
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Fig. 4. Hip height and forward velocity over time. The system converges
to the new gait in approximately 5 steps.

with

A =
[
Lg1Lfh1 Lg2Lfh1

Lg1Lfh2 Lg2Lfh2

]
(20)

where L2
fhi, Lfhi, Lgihi and LgiLfhi denote the (repeated)

Lie-derivatives of hi along the vector fields defined in (15),
κd, κp, κv are tunable control parameters and ϵ ∈ [0, 1

2Lg] is
the distance around VLO during which h1 is controlled.

The control inputs (17), (18), (19) ensure that the error h1

converges asymptotically to zero and that the error h2 is at
least bounded [6].

Remark: The control inputs u1, u2 in (17)–(19) are con-
tinuous. However, their continuity is not guaranteed at the
moment of transition.

IV. CONTROLLED S-SLIP SIMULATION RESULTS

To show the robustness of the method with respect to
forward velocity differences, a slow gait with an average ve-
locity of Fr = 0.259 (0.811 m s-1) and (α0, ζ̃) = (70, 0.224),
and a fast gait with an average velocity of Fr = 0.457 (1.429
m s-1) and (α0, ζ̃) = (65, 0.224) are chosen. Furthermore,
m = 80 kg, λ1 = λ2 = 0.50 m and β0 = 170 deg (s.t.
L0 ≈ 0.996 m), parameters which correspond roughly to
humans. For the S-SLIP controller we set {ϵ, κp, κd, κv} =
{0.1, 50, 25, 50}, found using multiple simulation runs. From
ζ̃ = 0.224 follows ζ0 ≈ 175 N m rad-1. Simulations were
performed in Mathworks MATLAB R2012b, using the ode45
solver with absolute and relative tolerances of 1e-11.

The system starts in the slow gait (gait 1), is commanded
to change to fast gait (gait 2) at 1.0 m, and then to switch
back to the slow gait (gait 3 = gait 1) at 5.5 m. The controller
references are produced using the switching method in [11].

Fig. 4 shows the hip height and forward velocity over time,
which converge to the new gait in approximately 5 steps. Fig.
5 shows the corresponding control input and error functions.
After transition the knee stiffnesses converge to the nominal
value. Fig. 6 shows the energy balance. Most of the total
energy increase on transition is put into kinetic energy, to
accommodate the faster gait.

In the next section the control strategy proposed for the
S-SLIP model is extended, to accommodate the additional
dynamics of a realistic bipedal robot walker.
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Fig. 5. Control input and error functions. The knee stiffness converges to
the nominal value after rejection of the transition disturbances.

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

time [s]

N
o
rm

a
li
se
d
en

er
g
y

 

 

Kinetic energy
Potential energy
Elastic energy
Control potential energy
Total energy

Fig. 6. Energy balance. The total energy increases on transition to the
second gait, mostly reflected in kinetic energy increase resulting from the
increased forward velocity.

V. BIPEDAL ROBOT MODEL

The bipedal robot model is based on the mechanical design
of an existing bipedal walker [7] and is modeled in the 20-
sim 3D Mechanics Toolbox (Controllab Products B.V., The
Netherlands) as depicted in Fig. 7. It is a four-link model
with segments of length λ1 and λ2 similar to the S-SLIP
model. However, conversely to the S-SLIP model, the swing
leg does not disappear during swing, and its dynamics should
be included in the model.

The hip mass is replaced by two separate upper-leg
masses mh,l,mh,r – there is a small mass difference on the
physical robot due to a guide rail on the left side – with
rotational inertias Jh,l, Jh,r, and two lower-leg masses ml

with rotational inertias Jl are added (Fig. 8). The hip joint
position is denoted by (x, y), and we denote the angles of
attack of the virtual legs by αl, αr. Similarly, the knee joint
angles are denoted by βl, βr respectively. The angle-of-attack
of the virtual stance leg (during SS) or leading virtual leg
(during DS) is always denoted as α. The hip angle is denoted
by θ.

There are three control inputs to the system: hip torque τh,
left knee torque τl and right knee torque τr. The hip torque
is generated by a realistic motor and gearbox model and
the knee torques are generated by variable stiffness actuator
(VSA) models. VSAs belong to a class of actuators which are
able to change their apparent output stiffness independently
of their output equilibrium position by proper control of their
internal degrees of freedom. In this work a model of the
vsaUT-II is used [12].
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Fig. 7. The bipedal robot model is based on the mechanical design of a
bipedal walker in our lab, with realistic body dynamics, friction and ground
contact forces.

Fig. 8. Bipedal robot model. The model is similar to the S-SLIP model,
with the hip mass replaced by two upper-leg masses and the addition of
two lower-leg masses.

The foot contact positions are denoted by cl, cr and the
ground contact forces are modeled using the Hunt-Crossley
contact model. The robot is constrained to the sagittal plane
using constraint forces.

VI. BIPEDAL ROBOT CONTROL DESIGN

A. Controller Structure

The proposed controller structure of the bipedal robot
is shown in Fig. 9. The controller determines the robot
configuration and phase from angle measurements and foot
contact sensors. For the SS stance leg and DS, the controller
uses the knee stiffness control strategy developed for the S-
SLIP model as presented in Sec. III. During stiffness control

Fig. 9. Proposed controller structure. The controller switches between
constant-stiffness trajectory control and stiffness control for each of the
knees depending on the phase. During leg swing, the hip and leg retraction
trajectories are generated using minimum-jerk trajectories.

Touch-downLift-off α
ρ=0 ρ=1

Fig. 10. During single-support phase the hip swing and leg retraction are
parametrised using the variable ρ, with ρ = 0 at lift-off and ρ = 1 at the
expected moment of touch-down.

the equilibrium position of both knees is set to β0, i.e. the
knee rest angle, to obtain the desired stiffness behaviour.
The swing leg is controlled using constant-stiffness trajectory
control of the knee for leg retraction. The hip swing and
leg retraction trajectories are generated using minimum-jerk
trajectories, parametrised by a variable ρ (Sec. VI-B).

B. Step Parametrisation

For control of the hip swing and leg retraction, each step
is parametrised from lift-off to subsequent touch-down using
the variable ρ (Fig. 10). We define ρ ≡ 0 at lift-off, and
ρ ≡ 1 at the expected moment of touch-down. We define ρ
as a function of the angle-of-attack of the current stance leg
α, set to either α = αl (left stance) or α = αr (right stance):

ρ =

 0 α ≤ αlo

(α − αlo)/(αtd − αlo) otherwise
1 α ≥ αtd

(21)

such that given αtd > αlo, ρ ∈ [0, 1]. We calculate αlo = α
at the moment of lift-off to ensure continuous behaviour.
The value of α at the expected moment of touch-down is
obtained from the reference S-SLIP model as αtd. To ensure
continuity, the value of ρ is also calculated during flight
phase using the leg last in contact.

C. Hip Swing

The desired hip trajectory θ∗(ρ) is generated using a
minimum-jerk trajectory, with boundary conditions(

θ∗(0)
θ∗(1)

)
=

(
θlo

θtd

)
(22)

where θlo is the hip angle calculated at the moment of swing
leg lift-off and θtd is the hip angle expected to result in
the desired angle-of-attack of the swing leg, calculated as
θtd = α0 − αtd.

D. Leg Retraction

The leg retraction trajectory is generated similarly to the
hip swing. However, the leg is kept retracted for a period
during the swing to avoid foot scuffing.

The desired knee angle β of the swing leg is given as

β∗(ρ) =


r1(ρ) 0 < ρ < 0.3
βret 0.3 ≤ ρ ≤ 0.6
r2(ρ) 0.6 < ρ ≤ 0.85
β0 0.85 < ρ < 1

(23)

where βret is the retracted knee angle and r1(ρ), r2(ρ) are
minimum-jerk trajectories which control β∗ from β0 to βret
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TABLE I
BIPEDAL ROBOT MODEL PARAMETERS

mh,l 7.511 [kg] ml 0.779 [kg]
mhr 6.848 [kg] ζ0 196.6 [N m rad-1]
λ1 0.515 [m] λ2 0.495 [m]
β0 160 [deg] α0 70 [deg]
βret 137.5 [deg] αtd 98.3 [deg]
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Fig. 11. Walking behaviour with constant knee stiffness. Vertical dashed
lines indicate VLO. The shaded area indicates the step that was used for
reference gait approximation. The average gait velocity is decreasing as time
progresses, as there is no energy injected through variable knee stiffness.

and from βret to β0, respectively. The domains in (23) were
chosen such that the leg is quickly retracted to avoid foot
scuffing, and has reached its extended position before touch-
down.

VII. BIPEDAL ROBOT MODEL RESULTS

The bipedal robot was simulated using the Vode Adams
integrator with absolute and relative tolerances of 1e-8. The
system parameters are as in Table I.

A. Gait Reference

To obtain the gait reference for the bipedal robot model,
the system was given a constant knee stiffness ζ0 (i.e. S-SLIP
knee stiffness control turned off) and a small push forward
to start walking. This way only leg swing and leg retraction
are controlled using ρ, i.e. there is no dependency on the
parametrised reference and the behaviour is mainly governed
by leg swing dynamics. The resulting walking behaviour is
shown in Fig. 11. Vertical dashed lines indicate VLO and
the system starts in left stance VLO.

Walking starts with an average forward velocity of ≈ 0.7
m s-1, however the average gait velocity is decreasing as time
progresses, and, eventually, the system comes to a standstill.
Thus only the hip swing is not injecting sufficient energy to
compensate for losses and we don’t converge to limit cycle
behaviour. We approximate the gait reference using the hip
trajectory of the second step by Fourier series (Fig. 11).

B. Walking Results

We now enable the S-SLIP knee stiffness controller. We
again set {ϵ, κp, κd, κv} = {0.1, 50, 25, 50}. Fig. 12 shows
the walking behaviour of the system after walking for some
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Fig. 12. Stable walking gait with controlled knee stiffness. Vertical dashed
lines indicate VLO. The knee stiffness control successfully injects the lost
energy every step.

time. The system converges to a stable walking gait. Knee
stiffness control successfully injects the lost energy every
step, keeping the mean energy over every step constant,
resulting in constant average velocity. Some asymmetry
remains between left and right stance, due to the mass
asymmetry. This is reflected in the inputs and errors (Fig.
13), as the reference was created out of a step during right
stance there is a larger error and control inputs during left
stance. The hip height error is below 1.5 cm and the velocity
error is below 0.1 m s-1. The control inputs are limited to
ul, ur ∈ [−ζ0, 1000] N m rad-1. The average forward velocity
during the shown interval is 0.65 m s-1, corresponding to a
Froude number Fr of ≈ 0.21. In comparison, “Veronica“ [8]
achieves speeds ranging from an Fr of 0.07 to 0.16, and
“Meta“ [9] achieves an Fr of 0.1 to 0.28.

The SS velocity control law (18) generates high control
inputs, especially during touch-down and left-foot push-
off. This results from the orientation of the leg in these
cases and low compression of the leg. The actuator power
corresponding to the control inputs are shown in Fig. 14. Hip
actuator power is below 60 W. VSA Stiffness control power
is generally below 20 W. The power required to change the
knee equilibrium position has peaks up to 150 W due to the
short leg retraction and extension time and low retraction
angle. These values are within the limits of the motors of the
physical robot, although we did not account for efficiency
overhead of the mechanical implementation of the VSAs
[12].

VIII. CONCLUSIONS AND FUTURE WORK

We have analysed the dynamics of the S-SLIP system and
developed a control strategy based on variable knee stiffness
that is robust enough to handle changes in the gait, i.e., able
to control the system from one limit cycle walking gait to
another. It was shown that the controller can switch gait by
injecting or removing energy from the system appropriately,
after which control inputs converge to zero.

Towards a control strategy for bipedal robots to change
gait, a bipedal robot model with realistic dynamics was
designed. The S-SLIP control strategy was extended to
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Fig. 13. Control inputs and errors. As the reference was created out of
a step during right stance, there is a larger error and control inputs during
left stance. The hip height disturbance arising from foot push-off during
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Fig. 14. Hip and VSA power. Hip power is below 60 W. VSA stiffness
control power is generally below 20 W. The power required to change the
knee equilibrium position has peaks up to 150 W due to the short leg
retraction and extension time and low retraction angle.

facilitate hip swing and leg retraction. To obtain the desired
stiffness behaviour together with adjustable knee equilib-
rium position for leg retraction, variable stiffness actuators
have been used. The gait reference was obtained from the
constant-stiffness walking behaviour of the system. Simu-
lated experiments show the controller successfully injects
energy lost due to friction and foot impacts and the system
converges to limit cycle walking gait.

In the presented results a constant high knee stiffness was
used to obtain the reference gait, however gaits with lower
knee stiffness could make better use of the compliant leg
behaviour, storing mechanical energy and thus making the
gait more energy efficient. Furthermore, our results showed
that the moment of touch-down is important, mainly due
to the explicit dependency on a gait reference parametrised
in forward position. In the case of disturbances this may
lead to the system running out of phase with the reference.
Parametrisation of the reference w.r.t. the orientation of the
current stance leg or touch-down events should be considered
in the future.

Future work will focus on further improving the control
strategy and implementation on the experimental setup.
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