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Abstract— The Spring-Loaded Inverted Pendulum (SLIP)
model has been shown to exhibit many properties of human
walking, and therefore has been the starting point for studies
on robust, energy-efficient walking for robots. In this paper,
the problem of gait variation during walking on the SLIP
model is addressed by controlling the leg stiffness and the
angle-of-attack in order to switch between gaits and thus
regulate walking speeds. We show that it is possible to uniquely
describe SLIP limit cycle gaits in fully normalised form. Using
that description, we propose both an instantaneous switching
method and an interpolation method with an optimisation step
to switch between limit cycle SLIP gaits. Using simulations,
we show that it is then possible to transition between them,
after which the system converges back to zero-input limit cycle
walking.

I. INTRODUCTION

This work is inspired by the performance of human
walking, which combines high robustness with high energy
efficiency. In contrast, most existing legged robotic systems
show either robustness or energy efficiency.

Passive dynamic walking can be realised by designing
mechanics such that it has a walking gait as dynamic mode
[1]. However, while designs based on the principle of passive
dynamic walking show high energy efficiency, they are not
very robust against external disturbances. Furthermore, these
robots rely on compass gaits, using either stiff legs or locking
the knee during walking, which does not resemble human
legs. Other, highly controlled systems show high robustness
at the exchange of energy efficiency [2]. Combining these
two aspects has proven difficult.

It has been shown that human walking on flat terrain can
be accurately modeled by an inverted passive mass-spring
system. The Spring-Loaded Inverted Pendulum (SLIP) model
shows walking dynamics strongly comparable to human
walking in terms of hip trajectory, single- and double-support
phases and ground contact forces [3]. It exhibits self-stable
walking and running gait for a relatively large range of
system parameters. It can demonstrate walking with different
forward velocities as well as running [3], [4]. Although the
SLIP model exhibits self-stable walking gait for large ranges
of parameters on its own, it has been shown that the basin
of attraction can be enlarged by control of a variable leg
stiffness [5]. The Variable SLIP (V-SLIP) model significantly
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increases robustness against external disturbances and, after
a disturbance, is able to restabilise the system into its original
gait by injecting or removing energy appropriately.

It is desirable to be able to change the forward velocity of
legged robots, for example slowing down to save energy,
or speeding up to travel large distances quickly. In [7],
it was shown that it is possible to change gait on the
SLIP model by controlling the angle-of-attack. However,
the method relies on imposing constant system energy, thus
significantly reducing achievable velocities by injecting or
removing energy in the system. In [8], the authors propose
velocity control of a four-link walking model with stiff
legs by changing step length and the frequency of the hip
actuation. By placing their robot on a slope, they negate the
loss of energy due to foot impacts and propose a velocity
control strategy by controlling the slope. The work in [9]
shows in simulation and experiment that it is possible to
change velocity by changing step length and joint stiffnesses.
They use variable stiffness actuators in each joint, but lock
the stance leg knee to support the robot. A stiff-legged walker
is used in [10], where the authors vary the pitch of a torso
to induce different walking speeds. These works rely on
compass gaits, using either stiff legs or locked knees during
stance.

In this work, the problem of gait variation during walking
is addressed by the design of a control strategy for the V-
SLIP model that allows to switch between limit cycle gaits
during walking by actively controlling the leg stiffness and
angle-of-attack. We propose an optimisation criterion that
aligns the two gaits and then switches between them by
changing control references and system parameters appro-
priately, after which the system converges back to zero-input
limit cycle walking. Energy is injected or removed from the
system appropriately to accommodate the new gait.

The remainder of this paper is outlined as follows. Section
II describes the SLIP model together with a normalised
notation of SLIP limit cycle gaits. Section III outlines the
strategy to control the V-SLIP system and switch between
limit cycle gaits. Section V contains simulation results of
the proposed method. Lastly, Section VI concludes on the
work and proposes directions for future efforts.

II. THE SPRING-LOADED INVERTED PENDULUM
MODEL

A. SLIP Dynamics

The bipedal SLIP model is shown in Fig. 1. It consists of
a hip point mass m, which connects two massless telescopic
legs. The legs consist of springs with rest length L0 and
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Fig. 1. The SLIP model consists of a hip point mass m, with two massless
telescopic springs, with stiffnesses k0, as legs. The model is shown during
double-support phase, with both legs touching the ground at the foot contact
points with x-positions c1 and c2.

stiffness k0. Given properly chosen initial conditions, the
SLIP model shows stable passive walking gaits [3], [4].

1) Configuration Manifold & State Transitions: The con-
figuration of the system is given by the position of the hip
mass as (x, y) =: q ∈ Q, and its velocity by q̇ ∈ TqQ, the
tangent space to Q at q. The system state is then given as
x := (q,p), with the momentum p := (px, py) = M q̇ and
the mass matrix M = diag(m,m). A single step is defined
as a trajectory q(t) ∈ Q that starts with the system in Vertical
Leg Orientation (VLO), where the hip mass is exactly above
the supporting leg and c1 = x. The step ends when the
system again reaches VLO (Fig. 2), and the role of the legs
is then exchanged. We define the step length Lg := x(T ),
i.e. the distance travelled after one step, where T is the gait
time period.

During a single step, two phases must be distinguished –
single-support (SS) and double-support (DS), during which
one and two legs are in touch with the ground, respectively.
The transition from single- to double-support occurs when
the swing leg touches the ground, i.e. the mass reaches the
touch-down height1 ytd associated with the angle-of-attack
α0 and the rest length of the leg L0 (Fig. 2):

y = ytd := L0 sin(α0) (1)

The location of the leading foot contact position c2 is then
calculated as (Fig. 1):

c2 = x + L0 cos(α0) (2)

Similarly, the transition from double- to single-support oc-
curs when either leg reaches its rest length2:√

(x − ci)
2 + y2 = L0 , i ∈ {1, 2} (3)

At transition to single-support, the swing leg disappears and
reappears at the subsequent instance of touch-down, which
is possible because the leg is massless. In the nominal case,
only the trailing leg reaches its rest length and contact c2

is relabeled as c1 to correspond to the notation used during

1Note that this implies that the hip height for SS is always higher than
for DS.

2This ensures continuity of the system energy as there is no potential
energy in the spring at lift-off.

Fig. 2. A single step of the SLIP model, shown at the moment of
touchdown. The step starts and ends at VLO and has length Lg . Note that
at touchdown, the swing leg is at exactly α0 with the ground and has length
L0. At touchdown, the SLIP model goes into double-support (DS) phase,
shown by the touch-down height ytd, and returns into single-support (SS)
phase when the trailing leg reaches length L0 and the hip again crosses
ytd.

single-support phase. We can now define two subsets of Q
which correspond to the single- and double-support phases,
respectively:

QSS = {q ∈ Q | y > ytd , y < L0}
QDS = {q ∈ Q | y < ytd , y > 0}

(4)

where y < L0 and y > 0 are included to avoid the remaining
cases, i.e. lift-off and fall respectively. Note that for a walking
gait q ∈ QSS ∪QDS . 3

2) System Dynamics: To derive the dynamic equations for
the system, we use the Hamiltonian approach. The kinetic
energy function is defined as K = 1

2p
T M−1p with M :=

diag(m,m) and the potential energy function as

V = mgy +
1
2
k0 (L0 − L1)

2 +
1
2
k0 (L0 − L2)

2

where Li =
√

(x − ci)
2 + y2 and g is the gravitational

acceleration. During single-support phase, we set L2 ≡ L0,
i.e. the swing leg is uncompressed and it exerts no force.
The dynamic equations are then defined by the Hamiltonian
energy function H = K + V as

d
dt

[
q
p

]
=

[
0 I
−I 0

] [
∂H
∂q
∂H
∂p

]
(5)

where I is the identity matrix. Note that a solution q(t) of
(5) is of class C2, due to the non-differentiability of the leg
forces at the moment of transition between the single- and
double-support phases.

B. Limit Cycle Gaits for the SLIP Model

It was shown in [4] that, given the proper system param-
eters and initial conditions, the dynamics described by (5)
exhibit autonomous stable walking gait. A limit cycle gait

3Lift-off is also possible while q ∈ QSS ∪QDS . We take care of this in
simulation by checking L1 ≤ L0 ∨ L2 ≤ L0, i.e. there is always at least
one leg in contact with the ground.
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is a periodic walking gait which returns to the same state
periodically. From this point on, we refer to limit cycle gaits
of the SLIP model as natural gaits.

In our description of natural gaits we use the state at VLO
as initial conditions, i.e. x0 = (q,p)0 = (x, y, px, py)0, and,
during walking in natural gait, the system returns to this state
at every VLO. Since we can take at VLO x ≡ 0, a natural
gait Σ can then be fully described as

Σ = (α0, k0, L0,m, y0, px,0, py,0) (6)

Note that it is not possible to use the total system energy H
to uniquely describe a natural gait, because energy can be
stored in either potential or kinetic energy.

C. A Normalised Notation of SLIP Limit Cycle Gaits

k0 and H can be normalised, such that SLIP models with
different parameters can be compared easily:

k̃ = k0
L0

mg
H̃ =

H

L0mg
(7)

If we normalise x as x̃ := (q̃, p̃) = (x̃, ỹ, p̃x, p̃y) with

x̃ =
x

L0
ỹ =

y

L0
p̃x =

px

m
√

L0g
p̃y =

py

m
√

L0g
(8)

and use (7), we obtain a fully normalised unique description
Σ̃ of a natural gait:

Σ̃ =
(
α0, k̃, ỹ0, p̃x,0, p̃y,0

)
(9)

The gait trajectory can then be found by solving (5) for Σ̃.
Using this description, equal gaits on different SLIP systems
now result in the same normalised state trajectory x̃(t) =
(q̃(t), p̃(t)). Similarly to p̃x, p̃y , the velocities are normalised
as

˙̃x =
ẋ√
L0g

˙̃y =
ẏ√
L0g

(10)

Note that the normalisation ˙̃x is the Froude number Fr [9],
[10], used to compare the relative walking speeds of systems
with different leg lengths.

III. CONTROL DESIGN

By actively controlling the leg stiffness of the SLIP
model, the robustness of the system to external disturbances
can be significantly increased and, after a disturbance, the
system can be stabilised into its original gait by injecting
or removing energy appropriately [5]. The extended model,
called V-SLIP, replaces the constant stiffness legs by variable
stiffness legs.

We use the ability to change the leg stiffness to transition
between gaits. The rationale is as follows. By considering a
gait switch as a disturbance to the system which has to be
rejected, the system can be controlled into any gait which
is within the basin of attraction of the closed loop system.
Furthermore, because there are large continuous regions of
self-stable natural gaits with different forward velocities [4],
the system can change into nearly any gait by using an
appropriate transition strategy. In this section, we discuss the

leg stiffness control that stabilises the system into a natural
gait. The next section will discuss the gait transition strategy.

The variable stiffness legs of the V-SLIP model have
stiffness ki = k0 + ui, where ki corresponds to the leg with
contact ci, and control inputs ui restricted to subsets Ui =
{ui ∈ R|0 < k0+ui < ∞}, such that the result is physically
meaningful. Given a natural SLIP gait Σ̃ and corresponding
state trajectory x̃(t), which is a solution of (5), we intend
to control the system such that it converges to its natural
gait, i.e. a reference x̃◦(t) such that ui → 0 and ki → k0,
i ∈ {1, 2}. However, as the system is underactuated during
the single-support phase, these references cannot be tracked
exactly, and as the system lags behind the reference this may
lead to instability. Because x̃ was identified as a periodic
variable, and required to be monotonically increasing in
time, the references may be reparametrised in x̃. Due to
the parametrisation in x̃, the gait references are sufficiently
described as

ỹ∗(x̃) = ỹo(x̃) ˙̃x∗(x̃) = ˙̃xo(x̃) (11)

However, as a general analytic expression for the spring-
loaded pendulum does not exist [11], a Fourier series expan-
sion approximation of the numerical solution is used.

To formulate the control strategy, we rewrite Eq. (5) in
standard form as

ẋ = f(x) +
∑

i

gi(x)ui (12)

and then define error functions h1 and h2 as

h1 = y − y∗

h2 = ẋ − ẋ∗ (13)

The control solution is then given as follows.
• For q ∈ QSS :

u1 =
1

Lg1Lfh1

(
−L2

fh1 − κdLfh1 − κph1

)
u2 ≡ 0

(14)

• For q ∈ QDS :[
u1

u2

]
= A−1

[
−L2

fh1 − κdLfh1 − κph1

−Lfh2 − κvh2

]
(15)

with
A =

[
Lg1Lfh1 Lg2Lfh1

Lg1Lfh2 Lg2Lfh2

]
(16)

where L2
fhi, Lfhi and LgiLfhi denote the (repeated) Lie-

derivatives of hi along the vector fields defined in (12) and
κd, κp, κv are tunable control parameters. The control inputs
(14), (15) ensure that the error h1 converges asymptotically
to zero and that the error h2 is at least bounded [5], [6].

Remark: Due to the structure of the problem, the system
is not fully controllable during the single-support phase.
Because the error in y influences touch-down and lift-off
events, it is deemed more important. Thus, by design, only
h1 is controlled during the single-support phase (Eq. (14)).

Remark: During either single- or double-support, the con-
trol inputs u1 and u2 are continuous. However, their conti-
nuity is not guaranteed at the moment of phase transition.
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Fig. 3. Average forward velocities ˙̃xavg of natural gaits for different
values of (α0, k̃). Note that for given (α0, k̃), the average forward velocity
is proportional to the system energy H̃ .

IV. GAIT TRANSITION

A. Search of Stable Gaits

Suppose the system described by the SLIP model is in
some natural gait and it is commanded to change the velocity.
As natural gaits exist for large ranges of parameters, there
often exists a range of natural gaits that achieve that velocity.
This is shown in Fig. 3. Natural gaits exist for many values
of (α0, k̃), and a single set (α0, k̃) can in general achieve a
range of average forward velocities (vertical bar in Fig. 3).

Exactly which values of (α0, k̃) are chosen is arbitrary
within the ranges of natural gaits. The next sections describe
a general method for switching from some given gait Σ̃i to
some other given gait Σ̃j , independently of Σ̃i and Σ̃j . We
do, however, make a distinction between switching between
gaits with equal values of (α0, k̃) (Section IV-C.1) and gaits
with different (α0, k̃) (Section IV-C.2).

B. Optimisation Criterion for Gait Switching

1) Finding Optimal Points: Suppose that two natural gaits
Σ̃i and Σ̃j have been chosen and that we want the system to
switch from Σ̃i to Σ̃j . The parametrisation in x̃ of both can
be used to determine exactly how to transition from one gait
to the other. In each gait one point should be considered: the
point in Σ̃i at which the switch is executed and the point
in Σ̃j to switch into. Fig. 4 shows example trajectories of
Σ̃i and Σ̃j . Any point x̃i ∈ [0, L̃g,i] on one step of Σ̃i can
be associated with any point x̃j ∈ [0, L̃g,j ] on one step of
Σ̃j . A combination of two values (x̃i,opt, x̃j,opt) should exist
that minimises some criterion J . Intuitively, to minimise the
required control input for transition, we propose to transition
at a point at which both gaits have approximately equal
momentum of the hip mass, that is, pi(xi) ≈ pj(xj) (Fig.
4). However, as m is constant, the velocities

( ˙̃x, ˙̃y
)

are used.
As the forward velocity is only controlled during double-
support phase, whereas the vertical position is controlled
during both single- and double-support, differences in ˙̃x are
penalised differently than in ˙̃y. Thus, both terms are included
separately. Additionally, we include the hip height ỹ, as
it would be beneficial to switch at a point at which the
trajectories are close together, such that the resulting error

Fig. 4. Optimisation of the switching point from Σ̃i to Σ̃j . The point x̃i is
moved along one step of Σ̃i, and J(x̃i, x̃j) is then calculated for all values
of x̃j in one step of Σ̃j . Minimisation of J for both these parameters then
results in the optimal switching points (x̃i,opt, x̃j,opt). Note that the gaits
shown here are far apart in ỹ, while in practice many gaits will partially
overlap, especially those with equal values of α0.

Fig. 5. Aligning optimal points of Σ̃i and Σ̃j , with step lengths L̃g,i and
L̃g,j , respectively. The trajectory of Σ̃j is shifted by x̃δ,j , such that x̃j,opt

aligns with x̃i,opt at the optimal switching distance S̃i,j
opt. The dashed blue

lines indicate the natural gait references, the red line indicates an example
gait transition.

h1 is smaller. We then define J(x̃i, x̃j) as follows:

J(x̃i, x̃j) = µ1 ∥ỹj(x̃j) − ỹi(x̃i)∥+

µ2

∥∥ ˙̃xj(x̃j) − ˙̃xi(x̃i)
∥∥ +

µ3

∥∥ ˙̃yj(x̃j) − ˙̃yi(x̃i)
∥∥ (17)

By choosing the weights µ1,2,3, the different aspects of the
gait can be emphasised as to achieve a smooth response. The
criterion J is then minimised numerically with respect to x̃i

and x̃j to obtain the optimal switching points:

min
x̃i,x̃j

J(x̃i, x̃j) → (x̃i,opt, x̃j,opt) (18)

Note that multiple minima may exist, so we search for the
global minimum. Due to the use of normalised variables
the results are again identical for the same natural gaits on
different SLIP systems, and due to symmetry results obtained
for the switch Σ̃i → Σ̃j are also valid for Σ̃j → Σ̃i.

2) Aligning optimal points: As gaits are parametrised as a
function of forward distance x̃, we define the gait transitions
in terms of forward distance as well. The switching strategy
for a single transition is then summarized as follows. Suppose
the system is commanded to switch into gait Σ̃j at a
distance Si,j

com [m], normalised as S̃i,j
com = Si,j

com/L0. We
then calculate the optimal switching distance S̃i,j

opt, which is
the first occurrence of the point x̃i,opt after this commanded
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Fig. 6. State transitions during limit cycle walking and gait transition.
For a single gait, a transition from single-support to double-support and
back occurs every step. When switching gaits in single-support, the system
transitions to single-support of the new gait, and vice versa. A transition
from double-support of gait Σ̃i to single-support of gait Σ̃j (or vice versa)
is invalid, as that would require foot lift-off at the moment the controller
decides to switch gaits, which is infeasible.

distance (Fig. 5):

S̃i,j
opt = S̃i,j

com − S̃i,j
com(modL̃g,i) + x̃i,opt (19)

If S̃i,j
opt < S̃i,j

com, we make sure the switching distance is after
the commanded distance by calculating S̃i,j

opt = S̃i,j
opt + L̃g,i,

that is, delaying the switch by exactly one step. Once the
optimal point in the current gait has been reached, the system
can switch into the new gait by changing α0, k̃, and the
controller references appropriately.

To ensure the system switches from the optimal point in
the step of Σ̃i into the optimal point in the step of Σ̃j , the
trajectory of Σ̃j is shifted in such a way that the point x̃j,opt

aligns with S̃i,j
opt in x̃. The shift x̃δ,j of Σ̃j is calculated as

x̃δ,j = S̃i,j
opt − x̃j,opt (20)

By shifting the reference of Σ̃j by x̃δ,j , the optimal points
(x̃i,opt, x̃j,opt) are aligned in x̃ (Fig. 5). The calculations
described in this section are not computationally intensive,
allowing them to be done on-line.

C. Switching Strategy

In this section we outline the switching strategy. Although
the method is general, we make a distinction between switch-
ing between gaits with equal values of (α0, k̃) and gaits
with different (α0, k̃). The first case will be shown to be
a particular case of the second.

Fig. 6 shows the possible states and transitions for some
gaits Σ̃i and Σ̃j . For a single gait, a transition from single-
support to double-support and back occurs every step, at
touch-down and lift-off respectively (i.e. when ỹ crosses
ỹtd). However, if the two gaits have different values of α0,
the current hip height may be defined as double-support in
Σ̃i, but as single-support in Σ̃j , i.e. ỹtd,i > ỹ > ỹtd,j .
This results in an invalid situation if the gait switching is
performed instantaneous at that point, as that would require
instantaneous foot lift-off at the instant of switching.

However, we do not want to rule out such points entirely
by modification of (17). Firstly, because at such points the
gait trajectories may be close together in terms of hip height
ỹ resulting in smaller error h1. Secondly, large variations in
α0 may cause gaits to be entirely separated in ỹ, such as in

Fig. 4, where the entire gait Σ̃j lies under the touch-down
height of Σ̃i. Therefore, for gaits with equal values of (α0, k̃)
instantaneous switching is used, and for gaits with different
(α0, k̃) gait interpolation is used, as outlined below.

1) Instantaneous Switching: As the values of (α0, k̃)
remain constant, we need only to define the controller
references

(
ỹ∗(x̃), ˙̃x∗(x̃)

)
as:

ỹ∗(x̃) =

{
ỹo

i (x̃) x̃ < S̃i,j
opt

ỹo
j (x̃ − x̃δ,j) x̃ ≥ S̃i,j

opt

˙̃x∗(x̃) =

{
˙̃xo
i (x̃) x̃ < S̃i,j

opt
˙̃xo
j(x̃ − x̃δ,j) x̃ ≥ S̃i,j

opt

(21)

2) Gait Interpolation: To avoid invalid gait transitions
(Fig. 6) caused by instantaneously changing the value of
α0, we need to ensure the value of α0 is continuous in
x̃. This way we avoid the invalid state transitions in Fig.
6. We extend (21) with a transition period, during which
the two gait references are interpolated, together with the
corresponding values of α0 and k̃:

ỹ∗(x̃) =


ỹo

i (x̃) β ≤ 0
(1 − β)ỹo

i (x̃) + βỹo
j (x̃ − x̃δ,j) 0 < β < 1

ỹo
j (x̃ − x̃δ,j) β ≥ 1

˙̃x∗(x̃) =


˙̃xo
i (x̃) β ≤ 0

(1 − β) ˙̃xo
i (x̃) + β ˙̃xo

j(x̃ − x̃δ,j) 0 < β < 1
˙̃xo
j(x̃) β ≥ 1

α0 =

 α0,i β ≤ 0
(1 − β)α0,i + βα0,j 0 < β < 1
α0,j β ≥ 1

k̃ =


k̃i β ≤ 0
(1 − β)k̃i + βk̃j 0 < β < 1
k̃j β ≥ 1

(22)
where the interpolation factor β is defined as β = (x̃ −
S̃i,j

opt)/γ. The parameter γ ≥ 0 is the transition length. By
the definition of the normalised variables, γ effectively is
the number of leg lengths in x to interpolate for. Of course,(
ỹ∗, ˙̃x∗) in (22) converge to (21) as γ → 0. The reason we

use (21) for constant (α0, k̃) is that then we let the controller
handle the transition as quick as possible, instead of forcing
a transition period of fixed length.

V. RESULTS

To demonstrate the effectiveness of the method for large
forward velocity differences, first achievable velocity ranges
for selected values of (α0, k̃) that result in symmetric natural
gaits is analysed. Simulations were performed in Mathworks
MATLAB R2012b, using the ode45 solver with absolute and
relative tolerances of 1e-10. The velocity ranges were found
by fixing the vertical velocity at VLO to zero, thus enforcing
symmetrical gaits [4], and incrementing the forward velocity
at VLO in small steps. The resulting velocity ranges are
shown in Table I, where ˙̃xavg denotes the normalised average
forward velocity and ẋavg denotes the average forward
velocity in [m s-1].
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TABLE I
STABLE FORWARD VELOCITY RANGES FOR SYMMETRICAL GAITS WITH

SELECTED VALUES OF (α0, k̃).

(α0, k̃) ˙̃xavg [] ẋavg [m s-1]
(60, 8) 0.239–0.344 0.750–1.079
(62, 10) 0.236–0.364 0.739–1.140
(64, 11) 0.229–0.361 0.719–1.132
(66, 14) 0.233–0.379 0.730–1.187
(68, 16) 0.229–0.378 0.718–1.183
(70, 20) 0.219–0.387 0.687–1.211
(72, 23) 0.226–0.380 0.706–1.189

0 0.1 0.2 0.3 0.4 0.5
0.92

0.94

0.96

0.98

x̃

ỹ

Normalised trajectories + touch−down heights

 

 
Gait 1
Gait 2
ytd

Fig. 7. Hip trajectories for a single step of two gaits with (α0, k̃) =
(70, 20). The slow gait (1) is double-humped, whereas the faster gait (2)
is single-humped. The dotted line ytd denotes the touch-down height, and
the solid dots denote the optimal points (x̃1,opt, x̃2,opt).

Two simulations are performed. In both cases, m = 80 kg
and L0 = 1 m. Furthermore, {µ1, µ2, µ3} = {15, 2, 5}. In
the first simulation (Section V-A), a constant value (α0, k̃) =
(70, 20) is chosen, and two gaits are selected: a slow gait with
average velocity of 0.238 (0.745 m s-1, using (8)) and a fast
gait with average velocity 0.372 (1.164 m s-1), an increase
of ≈ 56%. Switching between these two gaits corresponds
to moving up and down on one of the vertical bars in Fig.
3, and we use the instantaneous switching method (Section
IV-C.1).

In the second (Section V-B), a slow gait with an average
velocity of 0.232 (0.725 m s-1) and (α0, k̃) = (64, 11) and
a fast gait with an average velocity of 0.372 (1.164 m s-1)
and (α0, k̃) = (70, 20) are chosen, to demonstrate the ability
to change the angle of attack. In Fig. 3, this corresponds to
switching from one point on a vertical bar to another point on
another bar. Here we use the gait interpolation with γ = 1.0
(Section IV-C.2).

In both cases, the system starts in the slow gait (gait 1),
commanded to change to fast gait (gait 2) at 1.0 m, and then
switch back to the slow gait (gait 3 = gait 1) at 5.5 m.

A. Constant (α0, k̃)

Fig. 7 shows the hip trajectory for a single step of both
gaits. The first, i.e. slow gait, is double-humped, whereas
the faster gait is single-humped. This likely results from
the fact that the natural frequency of the hip mass and
leg springs remains approximately constant, while the gait
period changes. Calculating J for these two gaits results in
(x̃1,opt, x̃2,opt) = (0.259, 0.244), which corresponds almost
to the lowest point in both gaits. Of course, for the switch
back to the first gait we can use the same values but
interchanged. The found values result in optimal switching
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ỹ

 

 

System
Switch gait 1→2
Switch gait 2→3

Fig. 8. Hip trajectory for the transition from slow to fast gait and back for
two gaits with constant (α0, k̃). For each pair of vertical dashed lines, the
first indicates the commanded switching distance, and the second indicates
the resulting optimal switching distance.
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Fig. 9. Hip height and forward velocity over time. The vertical hip
motion converges to the new reference within one step. The forward velocity
converges in approximately 5 steps.

distances S̃1,2
opt = 1.306 and S̃2,3

opt = 5.762 respectively (Eq.
(19)).

Fig. 8 shows the resulting hip trajectory with the desired
and optimal switching points indicated. The hip returns to a
periodic trajectory very quickly. Fig. 9 shows the resulting
hip height and forward velocity in time, as well as the
natural gait references. It can be seen that because the hip
height is controlled during both single- and double-support,
ỹ converges to the new reference within a single step. The
forward velocity ˙̃x converges to the new reference within
approximately 5 steps in both transitions. Fig. 10 shows
the control inputs and position and velocity errors. The
disturbance that arises from the new references is rejected
in approximately one second for the hip height and four
seconds for the forward velocity respectively, after which
the leg stiffnesses converge back to the nominal value. Fig.
11 shows the energy balance. The energy increases from
H̃1 = 0.993 to H̃2 = 1.041 after the first switch, which if all
converted to forward kinetic energy would result in a forward
velocity of ˙̃xavg = 0.388 (1.216 m s-1). This shows that not
all added energy is converted into forward momentum but
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Fig. 10. Control input and error functions. The disturbances that arise from
the new references are rejected, after which the leg stiffnesses converge back
to their nominal values.
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Fig. 11. Energy balance. Most of the increase in total energy is used in
the kinetic energy of the system. Some of the additional energy results in
increased vertical motion of the hip.

instead into vertical motion (Fig. 7) and a minor increase in
average hip height.

Remark: The small periodic deviations in the inputs (Fig.
10) after convergence arise due to difference between the
approximated gait references using Fourier series and the
SLIP model dynamics.

B. Gaits with different (α0, k̃)

Fig. 12 shows the hip trajectory for a single step of both
gaits. It can be seen that due to the different values of α0

the gaits are completely separated in hip height during the
entire step; this also results in a significantly smaller step
length for gait 2. Again calculating J for these two gaits,
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ỹ

Normalised trajectories + touch−down heights

 

 
Gait 1

Gait 2
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Fig. 12. Hip trajectories for a single step of two gaits with (α0, k̃) =
(64, 11) and (70, 20) respectively. In contrast with Fig. 7, the gaits are
completely separated in ỹ and have different touch-down heights ytd,i. The
solid dots denote the optimal points (x̃1,opt, x̃2,opt).
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Fig. 13. Hip trajectory for the transition from slow to fast gait and back for
two gaits with different (α0, k̃). For each pair of vertical dashed lines, the
first indicates the commanded switching distance, and the second indicates
the resulting optimal switching distance.

we find (x̃1,opt, x̃2,opt) = (0.509, 0.259). This corresponds
to approximately the highest point in the first gait and the
lowest point in the second gait, arising from the separation of
both gaits in terms of hip height. The found values result in
optimal switching distances S̃1,2

opt = 1.090 and S̃2,3
opt = 6.041

respectively.
Fig. 13 shows the resulting hip trajectory with the de-

sired and optimal switching points indicated. The trajectory
smoothly rises to the new hip height as its shape transforms
into that of the second gait. Inspecting the hip height and
forward velocity over time (Fig. 14), we see a similar smooth
transition. The hip oscillation frequency increases as α0 and
forward velocity increase. Note how the forward velocity
suddenly increases as the system transitions back to the first
gait. This is due to α0 decreasing, thus lowering touch-down
height, leaving more time for the hip mass to accelerate
before touch-down. Fig. 15 shows the corresponding control
input and error functions. On a few occasions, the leg
stiffness reaches the lower limit. After transition, the leg
stiffnesses converge to the new gait’s nominal k̃ value. Note
that during single-support, the stiffness of the swing leg is
always equal to k̃ (Eq. (22)), as ũ2 ≡ 0 in that case (Eq.
(14)). The total energy again increases to accommodate the
faster gait. The increase is converted in both kinetic and
potential energy, while the average elastic energy decreases.
The latter can be attributed to the higher, more stiff-legged
walk of the second gait.

VI. CONCLUSIONS & FUTURE WORK

A method was presented that allows a bipedal V-SLIP
model to switch between natural gaits by actively controlling
the leg stiffness. Using this method it is possible to vary
the forward velocity during walking by choosing appropriate
natural gaits.

First, a normalised notation of natural gaits was intro-
duced. Next a optimisation step was proposed that aligns
two chosen gaits by minimisation of a criterion, designed
such that the transition between the two is as smooth as
possible. The switch was performed in one of two possible
ways; instantaneous switching for gaits with equal values of
the angle of attack and leg stiffness, and gait interpolation
with gaits with different values.
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Fig. 14. Hip height and forward velocity over time. The vertical hip motion
and forward velocity converge to the new gait in approximately 3 steps.
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Fig. 15. Control input and error functions. The disturbances that arise from
the new references are rejected, after which the leg stiffness converges to a
constant value. Note that during single-support, the stiffness of the swing
leg is always equal to k̃, as ũ2 ≡ 0 in that case (Eq. (14)).
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Fig. 16. Energy balance. In the first gait, there is relatively much energy
stored as elastic energy, due to the lower leg stiffness. Compared to Fig.
11, there is a significant rise in the potential energy due to the increased
hip height of the second gait.

It was shown that in both cases the system can be
controlled from gait to gait within approximately 5 steps.
In both cases, the hip trajectory converges within two steps,
but the forward velocity takes longer to converge. After the
transition, control action converges to zero as the system
converges into limit cycle walking.

Future work should focus on analysing the robustness
of the system during gait transition. Furthermore, it could
include a study on more realistic models, such as those
including knees and feet, or non-zero leg mass.
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