
  

 

Abstract— Clinical evaluation during walker-assisted gait is 

the first step to assess the evolution of a patient during 

rehabilitation and to identify his needs and difficulties. 

Advances in robotics made it possible to integrate a gait 

analysis tool on a walker to enrich the existing rehabilitation 

tests with new sets of objective gait parameters. This paper 

focuses on the legs detection method to estimate legs position 

during an assisted walk and the detection of gait events. In this 

paper, a walker is equipped with a laser range sensor (LRF) 

and encoders to analyze the spatiotemporal parameters of the 

walker users. Preliminary results obtained on ten subjects show 

that relevant data using a LRF can be extracted for gait 

analysis with a small error. 

I. INTRODUCTION 

Gait analysis has been an important research field for 
rehabilitation purposes. Although cameras made it possible 
to acquire gait information, processing the data can be time-
consuming and inefficient. As technology developed and 
computers enabled faster computation, gait analysis became 
more efficient. A common method in gait analysis is tracking 
and there are many precise methods to do this. The problem 
with such methods is that they are usually too expensive and 
need special laboratories for analysis, which results in both 
economical and practical disadvantages. 

Nowadays, many studies focus on the research of gait 
tracking with portable sensors placed on the subject. Inertial 
[1] and pressure/force sensors [2, 3] are very well known 
examples to measure joint rotations, dynamics and 
spatiotemporal parameters.  

Regarding gait analysis systems integrated on external 
devices like walkers, there are a large variety of examples 
[4]. This research is very important since clinical evaluation 
of walker users is the first step to decide the degree of 
assistance they require. This evaluation is only performed 
once and by observation, using standard scales and 
questionnaires. Advances in robotics made it possible to 
integrate sensors on conventional walkers to act as portable 
gait analysis systems. This advance allows evaluating the 
evolution of some disorders and enhances diagnostics in 
ambulatory conditions.  

However the majority walker studies focuses on 
developing systems based on force sensors located in the 
handles [5], or in the frame of the device to detect the 
bending force that is applied on the walker [6] to identify the 
body weight load of the user on the walker. 
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Other potential of integrating sensors on the walker is to 
infer the trajectory that the user wants to follow and help him 
doing it. JaRoW [7] integrated with a laser range finder 
(LRF) sensor to detect the location of user’s lower limbs in 
real time [7]. A Kalman filter was applied to estimate and 
predict the locations of the user’s lower limbs, in real time. 
Despite the good results, it is not certain to be effective when 
tested with elderly people, since their legs are usually closely 
spaced, and their algorithm does not consider this 
hypothesis. This can lead to false detections, making the 
algorithm to only detect one leg. In addition, it was only 
tested with one subject, which does not prove that the 
algorithm is efficient for different subjects and it does not 
make a gait analysis study.  

So, it remains the challenge to find a more reliable 
algorithm system that can deal with different legs postures 
and subjects to allow the correct calculation of gait 
parameters and trajectory of the user.  

Thus, this paper intends to present the design and 
development of a LRF system integrated on a smart walker 
that continuously determines, in real time, the relative 
position of the subject’s legs relative to the walker during its 
use; deals with different legs postures and it is calibrated for 
each different subject. In addition it is developed a system 
that detects gait events and measures spatiotemporal 
parameters associated with the walker’s use. This system will 
provide clinical insight to clinicians, while maintaining an 
objective and low cost system without the need of equipping 
the patient with sensors. 

Section II gives an overview of the ASBGo walker. 
Section III presents a brief state of the art in leg detection 
algorithms based on laser tracking. Section IV presents the 
purposed legs’ tracking algorithm.  The detection of gait 
events and the calculation of spatiotemporal parameters are 
presented in Section V. Section VI shows experimental 
results and discussion. Finally, in Section VII it is presented 
some conclusions and future work guidelines.  

II. ASBGO WALKER 

The ASBGo (Assistance and monitoring System Aid) 

walker has a mechanical structure that allows the installation 

of motors, sensors and other electronic components. It has 

four wheels and a supporting structure that holds the user. Its 

front casters can freely rotate and turn. Two motors drive its 

right and left rear wheels independently. 

For this work, the device is also equipped with one laser 

range sensor (LRF). This sensor is used to track both legs, to 

then estimate the trajectory and gait parameters. 

These parameters are important to evaluate the state of the 

user and to infer his evolution in the rehabilitation program. 

Many disorders are characterized by spatial temporal 

parameters, and their modification can bring insight into the 
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diagnostic of the user. Many examples can be presented: 

after a fall, people tend to enlarge their support base and 

present higher stance duration; Parkinsonian festination 

corresponds to an inconstant speed and short steps; multiple 

infarcts syndromes are related to small steps; Ataxic patients 

increase their support base, small steps, low velocity and 

very insecure gait [7].  

 

Figure 1.  ASBGo walker. 

A. LRF system 

The LRF (URG-04LX URG01) performs a scan of 240° 

with an angular resolution of 0.36 °. The time spent in each 

scan is 100ms, time that meets the requirements for the 

measurement of parameters associated with human gait. In a 

full scan, the sensor acquires 682 points (approximately one 

point per 0.36 °) from left to right. 

This system aims to acquire the distance between the legs 

and the walker. It can be deduced, mistakenly, that the most 

appropriate position for fixing the sensor would be a few 

centimeters from the ground so that the feet of the user can 

be intercepted by the scanning plane of the laser. However, 

during the gait process, the user’s feet rise above this plane, 

so that, in these moments, no information regarding the lifted 

foot is detected.  

To prevent undesired detection of the shoe or knee, the 

sensor is positioned to scan a plane, which is distant 30 cm 

from the ground and parallel to it. This plan was chosen 

according to [8].  

III. OVERALL LEGS’ TRACKING METHODS 

For the development of an algorithm to track the legs, a 

state-of-art research was made. Many studies already present 

methods of legs tracking with a LRF.  

In [9] it was used the geometric approach with the 

Bounding box method. This is a method for checking 

geometric features of a set of candidate data that is to be 

classified as "human legs". The classification is based on the 

length of the diagonal of an imaginary rectangle, among 

other features, which has two opposite vertices that 

correspond to legs points. However, according to [10], is not 

able to capture critical information for efficient detection of 

legs. 

Another method is known in the literature as Circle 

fitting [11]. This method assumes that the data from laser 

scanning concerning to human legs appears with a curved 

shape. Although other objects during scanning may also have 

curved forms, it is considered that the radius of curvature of 

human legs is normally between two specified limits. This 

builds up the classification method for verifying the radius of 

curvature of the detected shape. The disadvantage of this 

approach lies in the fact that the type of clothing can change 

the geometry.  

In [13] it is used a LRF to identify patterns of legs which 

can be separated legs, legs together or not parallel legs, in 

order to allow interaction between a person and a mobile 

robot. Despite dealing with different legs postures, these 

patterns are pre-defined with the help of features whose 

values are found off-line. The approach presented in [12] 

does not classify the legs posture into pre-defined patterns. 

They divide the space into two sub-regions (right and left) 

and classify the legs as right or left by observing the sub-

region in which they operate. This division of regions is 

made by an imaginary line passing through the centre of the 

LRF scanning. This approach could work well if 

implemented on a walker, however just in straight-line paths, 

since in a curve one leg could invade the sub-region of the 

other.  

In this work, it was developed a technique for detection 

of legs similarly to [13] since it deals with the problem of 

different legs postures. The difference relies on the online 

calibration of features that characterize the legs of different 

subjects to detect their legs, and the fact that it deals with 

noise and situations of non-pattern.  

IV. ALGORITHM FOR LEGS’ TRACKING 

The legs’ detection method presented in this paper is 
based on [12] and develops improvements since the previous 

work does not deal with noise, non-patterns and different 

user’s legs dimensions and clothes. The detection algorithm 

developed is divided into four parts: (1) Pre-processing of 

data; (2) Detection of Transitions; (3) Calibration Mode; (4) 

Pattern analysis and estimation of the coordinates of the legs. 

A. Pre-processing of data 

Each point distance is represented by mi, where i is the 

index of the point of acquisition. Thus, i vary from 1 to the 

maximum number of points of the scanning (682 points for a 

full scan). Each measurement point i, in each scan, is 

represented as follows: 

),( iii rm 
 

 
where ai is the angle calculated from the i index and ri 

corresponds to the measured distance (mm). Thus, the point 

set that is acquired in a full scan can be represented by:  

},...,{ 68221 mmmU   

 

In order to limit the background, a boundary of the 

region of interest is performed. This region of interest seeks 

to address the whole area where the legs will be positioned 

during walking. All measurements that are outside the limits 

of the definition will not be considered (256 < i < 426 (-

30º<i <30º), rmax=1000 mm). This procedure aims to make 

the LRF to only identify the person who is using the walker, 

thus preventing people and objects that are near the walker to 

(1) 

(2) 
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interfere with the detection of the user's legs. Figure 2a) 

shows the top view of the walker in a situation where a 

person P1 is with the legs inside the defined region and a 

person P2 is outside that region.  

               
a)                                                       b) 

Figure 2.  a) Top view of the walker and delimitation of the region of 

interest; b) Representation of the transitions’ detection procedure. 

B. Detection of transitions 

This section is intended to calculate transitions in each 

scan of the LRF signal. These transitions are defined as the 

difference between two consecutive i points of scan j.   

After the delimitation of the region of interest, vector Rj = 

[r256j, r257j, ... , r426j] is created and contains the distances 

measured in scan j. For the transitions’ detection it is created 

vector R’j= [r’256j , r’257j , ... , r’425j], which contains the 

transitions.  Each element is calculated as follows:  

ijjiij rrr   )1(
 , 256 < i < 425          (3) 

Vector R’j is then used to infer which transitions 

correspond to the bounds of a leg.  For this, each value of the 

vector R’j is compared to a threshold l (this constant is 

calculated online as it will be explained in the next section). 

If a transition value r’ij is higher than l, it corresponds to a 

bound of a leg. Figure 2b) shows an example of this 

detection, where r’1 and r’4 of vector R’ correspond to leg 

bounds.  

C. Calibration Mode 

For the correct detection of the legs some features must be 

assessed to determine if there is one leg, two legs or 

something else in the region of interest. This evaluation aims 

to distinguish legs from other objects that could be in the 

region of interest between the user and the walker. In order 

to do this the follow features are addressed: opening angle of 

the leg (lp) to check if it is one or two legs; and space 

between the legs in the sagittal plane (l) to detect transitions 

and thus legs’ boundaries. These features are illustrated in 

Figure 3. 

This paper proposes an online calibration (OC), during 

which the individual only needs to take two steps, at his own 

pace, with the walker to estimate lp and l and there is no 

time limit. l is the difference between r of each i point of a 

scan. lp is calculated as the difference between i of two 

consecutive transitions that correspond to a leg. 

Please note that OC should be performed with clothing 

that allows distinguishing the two legs and both legs must be 

spaced from one another during OC.  It is also noteworthy 

that as more acquisitions are obtained during OC the better 

the results, since the values of the features that will be 

evaluated are based on average values of all scans. These 

values are used for the same person, in the same conditions. 

If the person and/or conditions change, a new OC has to be 

done. 

 

Figure 3.  Features for calibration. 

D. Patterns Detection 

During assisted gait, the user can present different legs’ 
patterns. This makes the laser to capture different data 

patterns, and thus the calculated center of each leg will be 

different.  

The detection of patterns is based on the classification of 

the position of the legs according to the number of detected 

transitions. Three different patterns can be identified: 

separated legs (SL), legs together (LT) and overlapping legs 

(OL).  Figure 4 illustrates the three presented patterns and 

the acquired raw LRF data on these situations.  

To classify the patterns, first the number of transitions is 

calculated through the l value (calculated on OC). Then, if 

the number of transitions corresponds to one of the values of 

Table 1, the pattern is classified and the center of each leg is 

transformed onto polar coordinates (r, α). Later, for 

spatiotemporal parameters calculation these coordinates are 

converted to Cartesian.  

 

Figure 4.  Legs’ Patterns. 

TABLE I.  NUMBER OF TRANSITIONS FOR EACH LEG PATTERN 

 
Pattern 

SL OL LT 

Number of 

transitions 
4 3 2 

E. Non-Patterns Detection 

More than 4 transitions can be acquired and a non-pattern is 

detected. The occurrence of this situation appears when the 

laser detects an object or noise in the region of interest. In 

the case of detecting 5 transitions, it means that the laser 

detected noise or OC was not properly carried out. In the 

case of 6 or more transitions, it means that an unknown 

object was detected on the region of interest (Figure 5a) or a 
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noise occurrence divided one leg in two parts (Figure 5b). If 

these situations are detected the following procedures are 

executed: 

 
a)         b) 

Figure 5.  Situations where the algorithm detects 6 transitions. 

(i) Transition pairs verification 

First, the pairs of transitions are verified to check which 

pairs correspond to a leg. Two conditions are verified and 

both have to be valid: (1) Is the difference between  of two 

consecutive transitions higher then lp? If yes, it means that 

probably a leg was found and if not it is not a leg, like the 

situation illustrated on Figure 5a; then (2) Is ri+1 (i 

corresponds to the position of a transition) lower than 

1000mm (rmax)? This condition eliminates false legs, since 

the space between the legs can present a distance greater 

than lp. If both conditions are verified, only the pairs of 

transitions that correspond to legs are saved. 

(ii) State sequence verification 

After the first verification, the number of detected 

transitions is compared with the number of transitions of the 

previous scan.  This comparison is based on state sequence 

verification.  A state is characterized by a number of 

transitions.  

This state sequence is composed by four states (based on 

the number of transitions): 4T (4 transitions), 3T (3 

transitions), 2T (two transitions) and 0T (no transitions 

detected, which means no legs). All states are bidirectional 

and from scan to scan the same state can be verified. 

Observing Figure 6, possible transitions between states are 

identified by arrows.  

 

 

Figure 6.  The correct state sequence. 

In case incorrect state sequences are detected, a flag is 

set with value 1 and the current legs’ coordinates acquire the 

value of the coordinates of the past state. An example of this 

latter situation is illustrated on Figure 5b. In this case, the 

verification (i) will eliminate one leg (the right one) since it 

will consider that this acquisition only has the presence of 

one leg. Thus, 4T will pass to 2T, which is an incorrect state 

sequence. 

(iii) System error 

To verify if the latter two verifications worked, the 

algorithm verifies if the distance between two samples is 

greater than 200mm (the distance walked between two 

samples is never greater than this value).  If that happens, the 

distance of scan j is equal to scan j-1 and a flag is set equal 

to zero (the flag is only recorded to count how many times 

the system had a verification error, for analysis purpose).  

V. SPATIOTEMPORAL PARAMETERS 

This paper aims to calculate some specific spatiotemporal 

parameters while the user is walking with the walker. These 

parameters are important to evaluate the state of the user and 

infer his evolution in the rehabilitation program. 

The following spatiotemporal parameters are calculated: 

step and stride length, stride width, stride time, cadence, 

velocity, stance and swing and double support duration [14]. 

In order to calculate these parameters it is needed to 

calculate some gait events in the LRF signal in y direction 

for both legs (axis directions are depicted in Figure 2b).  

   

 

Figure 7.  Distance LRF signal of both legs in y-direction. The squares 

correspond to toe-off events (TO), the white circles to heel-strike events 

(HS) and the blue circles to legs crossing events (d_cross).  

Figure 7 illustrates the relevant events detection. The 

maximum values (squares) correspond to toe-off (TO) 

events; the minimum values (white circles) correspond to 

heel-strike (HS) events; and when the signals are crossing 

(d_cross) it means that the legs are also crossing (blue 

circles) [15, 16]. These events enable to calculate: 

 Stride Length (StL): distance between toe-off and heel 

strike from the same feet. It is calculated by the difference 

between the maximum distance and consecutive minimum. 

This moment is indicated at different times by ds1, ds2 and 

ds3. 

Right StL = ds1max – ds1min   

       Left StR = ds2max – ds2min             (4) 

 Step Length (SpL): is the distance between legs 

crossing and heel strike. It is calculated by the difference 

between the moments that two signals cross and the 

consecutive minimum. 

Right SpL = dcross-ds1min 

Left SpL = dcross-ds2min      (5) 

 Stride time (Stt): Time from initial contact of one foot 

(tds1min) to initial contact of the same foot (tds3min). 

     Stt = tds3min - tds1min              (6) 

 

 Cadence (frequency of the signal) and Velocity: 
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V = ds1max – ds2min  / dt         (7) 

 Stride width: is the distance between both legs in x-

direction (Figure 2). 

 Swing duration (SWD): is the time correspondent to 

the oscillation phase, when the feet are not on the ground. 

It is calculated as the time between the maximum (tds1max) 

and minimum (tds1min) values of ds1. 

SWD = tds1max - tds1min          (8) 

 Stance duration (SD): is the time correspondent to the 

support phase, when the foot is on the ground. It is 

calculated by the time between the minimum and maximum 

values of ds1 and ds3, respectively. 

SD = tds1min – tds3max            (9) 

 Double support time (DST): is the time when both feet 

are on the ground. It is calculated when both signals 

present a positive derivate. This happens between the 

instants related to ds1min (tds1min) and ds2max(t ds2max): 

DST = tds2max-tds1min            (10) 

  However, these values correspond to the distance between 

the user and the walker. Using odometry these values are 

converted to distances walked on the external environment 

(the explanation of this process is not on the scope of this 

article).   

VI. RESULTS AND DISCUSSION 

A. Calibration Mode results 

To acquire the lp and l values  a set of tests for data 

collection involving 10 subjects with different body sizes 

and types of clothing are conducted. After conducting 

several experiments with data from LRF in order to detect 

what are the best values for lp and l that could detect legs 

for all subjects, it was concluded that these values are 

different from subject to subject. In Table 2 it can be seen 

that the standard deviation is slightly high. 

TABLE II.  MEAN AND STANDARD VARIATION VALUES FOR OC 

FEATURES. 

Features 
Dimensions  

Mean Standard Variation 

lp 15o 9o 

l 32 cm 18 cm 

 

The possibility of setting the values for the use of several 

subjects is  tested. A test with the LRF data of 10 subjects 

enables to  calculate a  rate of failure of 83%. Thus, OC is 

needed to decrease this rate. 

After testing the same 10 subjects using the OC, it was 

concluded that: OC works great, presenting 2% to 0% rate of 

failure; if more steps are done by the subject during OC, 

more effective are both features to detect legs; it is necessary 

that during OC both legs are visible. In general it has been 

required an average of 1/2 steps, which corresponds to an 

average of 20 samples (i.e. 2s for OC since LRF has 100ms 

of acquisition period).  

B. Transitions’ and Patterns’ detection results 

To test the developed technique to detect legs, two types 

of experiences are performed: (i) Subjects stand in front of 

the walker; and (ii) Subjects push the walker while executing 

a straight forward trajectory. The achieved results are 

described next. 

(i) Subjects stand in front of the walker 

The real distance between LRF and the legs was measured 

through a metric tape and compared to the distance 

calculated by the LRF with 10 subjects. The error between 

these distances was lower than 2 cm for X coordinate and 

lower than 3 cm for Y coordinate (axis represented in Figure 

2). This means that the algorithm is correctly detecting the 

center positions of the legs.  

(ii) Subjects walking with the walker 

 To test if the algorithm could detect all patterns and 

outline the non-patterns, 10 other subjects were asked to 

walk straight forward while being filmed. It was observed 

that all the patterns were detected and the non-patterns were 

outlined. Figure 8 illustrates a compilation of the three 

patterns and two situations of non-patterns that were detected 

throughout the experiments with the 10 subjects. As it can be 

seen in Figure 8, the detection of the legs was successful.  

 

Figure 8.  Patterns results: a) SL; b) LT; c) OL and Non patterns on d) and 

e). 

In Figure 9a, it is shown an example of LRF distance 

signal in a straight-forward trajectory. In Figure 9b, in blue 

are represented the detected transitions and in red the 

algorithm correction. As it can be seen, when 5 transitions 

are detected, the algorithm sets a flag equal to 1 so that the 

right correction can be made. However, sometimes the 

algorithm cannot detect a solution for the problem and sets a 

flag equal to zero (Figure 9b). In this situation, the legs 

coordinates are set to the coordinated of the previous scan.  

C. Spatiotemporal parameters results 

Subjects were asked to walk straight-forward with a fixed 

step distance (marks on the floor). Figure 10a illustrates the 

gait events (heel strike, legs crossing and toe-off) that enable 

to calculate the spatiotemporal parameters and Figure 10b 

the results from the trajectory followed by the subject. This 

trajectory was calculated with the help of encoders’ data 
(odometry model that is not on the scope of this article). 

By detecting the samples where these events occur, one 

can then use the odometry model results and calculate the 

spatiotemporal parameters. Through the video records and 

by knowing the distance walked by the subjects an average 

error of 10% was obtained for the gait parameters.   
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Figure 9.  a) LFR distance signal and b) Number of detected transitions. 

VII. CONCLUSION 

This paper presents a system able to track the legs position 

during an assisted walk without equipping the user. A LRF 

sensor and encoders were used by a new detection algorithm 

that suits for all subjects through a calibration mode. 

Preliminary results show that this system has high potential 

to be used on clinical trials with patients on the hospital to 

give clinical insight to the clinicians.  

Further work is necessary to run more tests and reduce the 

errors associated with the calculation of spatiotemporal 

parameters. In addition, tests with patients will be done to 

infer if all patterns and situations were taken into account in 

this algorithm.   
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Figure 10.  a) LFR distance signal in y and x with the detected gait events 

and b) Odometry results. 
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