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Abstract— Nowadays, robotic-assisted surgery does not allow
beating heart surgery with autonomous motion compensation
functionalities. This paper tackles this problem, based on a
robotic control architecture that relies on force feedback. The
algorithm merges two cascade loops. The inner one is based
on the Kalman active observer (AOB), performing model-
reference adaptive control to impose a well-defined stable plant.
The outer one, based on a model predictive control (MPC)
approach, generates control references for beating heart motion
compensation. Two robots are used in the experiments. A
lightweight 4-DoF surgical robot generates desired surgical
forces and a 3-DoF robot equipped with an ex vivo heart at
the end-effector reproduces realistic heart motion. Additionally,
robustness to cardiac stiffness mismatches is analyzed.

I. INTRODUCTION

Cardiovascular diseases are the first cause of mortality
in the world. More than 17 million people die every year,
representing 29% of all global deaths. Among these, coro-
nary heart diseases are the most critical ones, reaching up to
7.2 million deaths [1]. The coronary artery bypass grafting
(CABG) is the most common surgical intervention to reduce
the risk of death. Currently, the CABG procedure involves
a median sternotomy (a 16− 20 [cm] incision in the thorax
allowing a direct access to the heart) and a cardiopulmonary
bypass (CPB), where heart and lung functionalities are
performed by an extracorporal machine. Significant trauma
and infection risks due to the long duration of surgery are
the major downsides of the sternotomy approach [2], [3].
But the greatest source of complications and post-operatory
mortality for patients is due to the CPB. Problems such as
inflammatory blood response to the heart-lung machine, the
risk of microemboly, kidney dysfunctions and neurological
complications such as stroke during the clamping of the aorta
have motivated new solutions that circumvent the use of
extracorporal circulation [4]. Passive mechanical stabilizers
have been conceived for locally decreasing heart motion,
allowing direct surgical procedures on the beating heart.
Placed around a region of interest (e.g., coronary artery),
these stabilizers constraint the motion by suction or pressure.
Many improvements have been done over the years, although
considerable residual heart motion (1 − 1.5 [mm]) still
remains [5]. Additionally, the intense pressure necessary to
cancel out heart motion affects blood circulation. Sucker-type
stabilizers do not present this problem, but they introduce

vacuum pressure that can cause epicardial damage [6]. In
this paper we propose force control techniques, which can be
applied to robotic-assisted heart surgeries, where autonomous
heart motion compensation still remains an issue.

The paper is organized as follows. Related work mainly
in the area of beating heart surgery is addressed in Section
II. The overall cascade MPC-AOB architecture is presented
in Section III where an AOB inner loop guarantees a well
defined stable plant and an MPC outer loop compensates
force disturbances induced by heart motion. Experimental
results with a time varying surgical force reference are
presented in Section IV. Finally, Section V concludes the
paper.

II. RELATED WORK

Compensating physiological motion autonomously
through sensory data (e.g., vision and/or force) enables
comfortable surgery without the drawbacks of classical
procedures, powering and enhancing surgical dexterity.
Based on visual servoing and a high speed vision system,
Ginhoux and co-authors [7] proposed a motion canceling
algorithm based on a MPC approach where future heart
motion is predicted. This approach assumes that the
heartbeat rate stays constant. More recently, Bachta and
co-authors in [8] and [9] improved classical stabilizer
solutions with piezo-electrical actuation for a 1 DoF system.
Using vision data, H∞, feedback control with notch
filter and MPC are assessed through in vivo experiments,
requiring prior knowledge of heart motion. Solutions
only based on visual servoing present several drawbacks
[10]. Surgeries are performed in a cluttered environment
where medical instruments can occlude artificial and
natural landmarks. This situation entails tracking problems,
disturbing motion compensation. Moreover, contact tasks
(e.g., suturing, incision and ablation) locally deform soft
tissues, affecting landmark calibration. Another important
point is that during contact tasks, physiological motion
induces disturbance forces which can hardly be compensated
by vision information.

Control architectures based on force feedback do not
suffer from these drawbacks and can give haptic feedback
to surgeons, which is an indispensable feature for surgical
telemanipulation, in particular for operations with delicate
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suture material [11], [12], [13]. However, these architectures
have to deal with higher sensor noise (e.g., for low contact
forces, the noise is often bigger than the signal) and no
physiological motion information can be obtained before
contact. Cagneau and co-authors [14] have proposed a force
feedback control scheme to compensate the periodic motion
of organs. Iterative learning control was implemented as
an outer loop to reject periodic disturbances, reducing bad
transients during the learning phase. No specific model
is necessary for the robot and environment, although the
period of the perturbation needs to be known in advance.
This assumption is problematic for cardiac surgeries due to
random and chaotic nature of heart motion [15]. Cortesão and
Poignet [16] have proposed two independent active observers
(AOB) for force control and motion compensation. The first
AOB is responsible for model-reference adaptive control to
guarantee a desired closed loop dynamics for the force. The
second one performs control actions to compensate physi-
ological motion. Simulation results have shown high qual-
ity compensation capabilities. In [17] Yuen and co-authors
proposed a feedforward force controller to compensate force
disturbances induced by the mitral valve motion. Using a 3D
ultrasound device, the mitral valve motion is estimated and
sent to the controller. In vivo experiments have shown good
capability to maintain in one direction a constant force on
the mitral valve. More recently, Kesner and Howe [18] have
presented a catheter robotic system dedicated to beating heart
surgery. A home made 1-DoF distal force sensor provides
force feedback information. Additionally, a force-modulated
position controller with friction and dead zone compensation
was developed to apply a constant force on the mitral
valve. The results showed good capability to maintain in one
direction a constant force on a fast moving target, although
catheter-based solutions have a limited force range. In [19]
we have presented a comparative study of two force control
architectures for physiological motion compensation. The
first one based on a model predictive control approach uses
a mathematical model to predict system behavior [20]. The
second one is based on a Kalman active observer to impose
desired closed-loop dynamics [21]. The performance of both
controllers has been evaluated for constant force references.
MPC and AOB have shown good motion compensation
capabilities, although residual force amplitudes were still
high to consider these architectures without improvements.
Therefore, in this paper we intend to merge both MPC and
AOB control architectures to achieve better results.

III. MPC-AOB CASCADE CONTROL ARCHITECTURE

The MPC approach presented in [22] is applied to an
unstable system. Even if MPC can deal with such plant, a
stable plant is more robust to handle external disturbances
(such as heart motion). Therefore we merge the classical
MPC approach with the AOB design [21] into two cascade
loops as shown in Fig. 1. An AOB inner loop is designed
to guarantee a well-defined stable plant. The MPC external
loop, based on a model of this well-defined stable plant,

predicts system behaviors and computes the control reference
for the inner loop.

This section is organized as follows. The open loop
system plant Gol is described in Section III-A, based on
robot dynamics and computed torque techniques. The AOB
architecture is addressed in Section III-B, based on a desired
closed loop model Gcl. The MPC architecture build on top
of Gcl is presented in Section III-C.

A. Open Loop System Plant

WAM robot dynamic parameters have been identified and
used to generate inverse dynamic model (IDM). Computed
torque control in the task space is implemented to linearize
the WAM robot. Given a set of generalized joint coordinates
q describing robot’s posture, the well-known robot dynamics
is represented by

M(q)q̈ + c(q̇, q) + g(q) = τ , (1)

where M(q) is the mass matrix, c(q̇, q) is the vector of
Coriolis and centripetal forces, g(q) is the gravity term, and
τ is the generalized torque acting on q. Using the operational
space formulation, (1) can be written as

Λx(q)Ẍ + Ωx(q, q̇) = Fc + Fe , (2)

where X is the Cartesian position, Λx(q) is the operational
space mass matrix, and Ωx(q, q̇) lumps Coriolis, centripetal,
and gravity terms, all in Cartesian coordinates. Fc is the
command force and Fe represents external forces acting on
the robot end-effector. Knowing robot dynamic parameters
and measuring Fe, Fc can be computed by

Fc = −Fe + Λx(q)f? + Ωx(q, q̇) , (3)

to obtained the decoupled plant

Ẍ = f?. (4)

Modeling errors in (3) corrupt (4), motivating the use of the
AOB architecture to compensate them. Equation (4) repre-
sents the dynamics of a unitary mass. f? is an acceleration,
being an input parameter. Introducing a damping term K2

and taking into account the system delay Td (mainly due to
signal processing), as well as a contact model represented
by K̂s (an estimation of the heart stiffness Ks), the linear
system plant Gol for each Cartesian dimension is given by

Gol =
K̂s e

−sTd

s(s+K2 e−sTd)
. (5)

For small Td,

Gol ≈
K̂s e

−sTd

s(s+K2)
. (6)

Its equivalent temporal representation is

ÿ(t) +K2ẏ(t) = K̂sv(t− Td), (7)

where y(t) is the plant output (measured force at the robot’s
end-effector) and v(t) is the plant input which is an accel-
eration reference. Defining the state variables x1(t) = y(t)
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Fig. 1. Cascade MPC-AOB force control architecture for beating heart surgery. Computed torque techniques linked with the robot inverse dynamics model
(IDM) generate a decoupled and linearized system. The open loop transfer function Gol also takes into account a damping factor K2 and the environment
stiffness Ks. The desired closed loop transfer function Gcl is obtained by the AOB architecture using the state-feedback gain Lr and the extra state p̂k .
L1 is the first element of Lr . The MPC generates a processed reference force uk for AOB control, based on the desired force Fd, the measured force yk
and Gcl. The external torque τe is mainly due to beating heart disturbances.

and x2(t) = ẏ(t), (7) can be written as[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −K2

] [
x1(t)
x2(t)

]
+

[
0

K̂s

]
v(t− Td).

(8)
Discretizing with sampling time Ts, the equivalent discrete
time system is of form1{

xr,k = Φrxr,k−1 + Γrvk−1
yk = Crxr,k

. (9)

In our case, xr,k has dimension three. The first two states of
the discretized system represent respectively the end-effector
force and its derivative (only the force is measured). The
other state is due to system delay Td = Ts and equal to
vk−1.

B. Active Observer Architecture

The continuous plant (6) and its discrete equivalent (9) are
unstable due to a pole at the origin. To increase performance
and robustness, our model predictive formulation requires a
well-defined stable plant. Therefore a first-order active ob-
server is implemented to achieve it. This design is motivated
by previous work [24], where a first-order AOB is enough
to deal with internal modeling error. The AOB requires the
description of the open loop system plant (9) as well as the
desired closed loop model Gcl. Defining Gcl by

Gcl =
1

(1 + Tcls)
2 e
−sTd , (10)

which corresponds to a critically damped system with time
constant Tcl where the input is the force reference uk and
the output is the measured force yk, a state-feedback Lr can
be computed in straightforward way. Additionally, one extra
state p̂k is introduced to compensate system disturbances,

1See [23], [24] for further details on discrete matrices.

since a first-order AOB has been chosen [25], [24], [21].
The AOB closed-loop estimation is given by[

x̂r,k
p̂k

]
= x̂−a +Kk (yk − ŷk) (11)

and
ŷk =

[
C 1

]
x̂−a , (12)

where the a priori augmented state estimation x̂−a is given
by

x̂−a =

[
Φr − ΓrLr 0

0 1

] [
x̂r,k−1
p̂k−1

]
+

[
Γr

0

]
uk−1.

(13)
The Kalman gain Kk reflects uncertainties associated to the
system state

[
x̂r (k) p̂ (k)

]T
, depending on system (Qk)

and measurement (Rk) noise matrices. Qk is of form

Qk =

[
Qxr,k

0
0 Qpk

]
. (14)

The absolute values of Rk and Qk are not important, since
only the relative relation is relevant for the Kalman gain [21].
The AOB is inserted in the cascade architecture depicted in
Fig. 1. The MPC generates a processed force reference uk for
AOB control, based on the prediction of the overall system
dynamics, which includes the desired force Fd, the measured
force yk and Gcl.

C. Model Predictive Control Architecture

The MPC is a model based control architecture developed
around a finite receding horizon strategy, and it requires a
discrete state space model of Gcl. From (10), Gcl can be
represented by {

xk = Axk−1 +Buk−1
yk = Cxk

, (15)

where the small system delay Td can be neglected for
the MPC approach [26]. Therefore, xk has dimension two
representing the end-effector force and its derivative. yk is
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the applied force and uk is a force reference for the AOB
inner loop. From (15), the xk prediction i samples ahead,
x̃k+i, is based on uk−1, yk, ũk+i and x̂k, where x̂k is a
state estimation of (15). At each sampling time k and along
the prediction horizon Hp, the future control sequence ũk+i

is computed by minimizing a cost function Wk to keep the
predicted output ỹk+i as close as possible to the predicted
desired force F̃d,k. Only the first element of the computed
control sequence, ũk+1, is sent to the AOB control loop. As
the prediction horizon is displaced towards the future, new
output predictions ỹk+i and new control sequences ũk+i are
computed at each sampling time.

1) Model Predictive Control Strategy: The methodology
of the MPC is characterized by the following strategy:

• The finite time horizon Hp defines the slot where
predicted outputs ỹk+i should follow F̃d,k. Hp is bigger
than the Gcl rise time, and its length greatly influences
control tracking capabilities. Extending Hp improves
performance, but increases computational time.

• At each time k, based on (15), the future outputs ỹk+i

are predicted along Hp, where i ∈ [1, Hp]. ỹk+i depends
on x̂k, uk−1, yk and ũk+i.

• The command vector ũk+i (i ∈ [0, Hp−1]) is computed
to minimize the cost function Wk, which is a quadratic
function of the predicted errors between ỹk+i and F̃d,k.
Wk also includes predicted control efforts. Two diag-
onal matrices λ and δ are associated to control efforts
and tracking errors, respectively. Increasing λ w.r.t. δ
has the effect of reducing control activity, entailing slow
response to disturbances. Decreasing λ w.r.t. δ increases
control dynamics and tracking performance. Therefore,
the relation between λ and δ defines the aggressiveness
of the controller in recovering from disturbances [26].

• A control horizon Hu ≤ Hp is introduced to reduce
computation time. Hu defines the time slot along which
the control command ũk+i is active (for Hu ≤ i < Hp,
ũk+i is kept constant). Although Hu = 1 has acceptable
performance for stable plants, increasing Hu makes the
control more active up to a limit where any further
increase in Hu has little effect. For high-performance
a larger value of Hu is desirable. When Hu and Hp

approach infinity, the prediction controller becomes the
well-known linear quadratic regulator (LQR) problem
[27].

• Once ũk+i has been computed, only the first element
ũk+i|i=0 is applied to system. The whole cycle of output
measurement yk, output predictions ỹk+i, and control
sequence ũk+i computation is repeated and updated at
each sampling time.

Since the desired force is not know in advance, F̃d,k is
constant during the entire time horizon Hp and equal to the
desired force known at instant k. The MPC control signals
ũk+i are computed based on the system model and cost
function Wk. A good control performance can be achieved
with Hu < Hp, entailing good tracking capabilities between
Fd and yk.

2) Formulation of MPC: From (15) and defining

ũk = ∆ũk + uk−1 (16)

we obtain the following state predictions,

X̃k = Ψx̂k + Υuk−1︸ ︷︷ ︸
past

+ Θ ∆Ũk︸ ︷︷ ︸
future

, (17)

with

X̃k =
[
x̃k+1 · · · x̃k+i · · · x̃k+Hp

]T
, (18)

∆Ũk =
[

∆ũk · · · ∆ũk+Hu−1
]T
, (19)

Ψ =
[
A · · · AHu AHu+1 · · · AHp

]T
, (20)

Υ =



B
...∑Hu−1

i=0 AiB∑Hu

i=0A
iB

...∑Hp−1
i=0 AiB


(21)

and

Θ =



B · · · 0
AB +B · · · 0

...
. . .

...∑Hu−1
i=0 AiB · · · B∑Hu

i=0A
iB · · · AB +B

...
. . .

...∑Hp−1
i=0 AiB · · ·

∑Hp−Hu

i=0 AiB


. (22)

Equation (17) is composed of three terms. Ψ, Υ and Θ only
depend on A and B matrices, and can be computed off-line.
Along the prediction horizon, the first two terms represent
the free response and the last term is the forced one. The
control increment vector ∆Ũk is computed by minimizing
the cost function

Wk = (Ỹk − F̃d,k)T δ(Ỹk − F̃d,k) + ∆Ũk
T
λ∆Ũk, (23)

with

Ỹk =
[
Cx̃k+1 · · · Cx̃k+i · · · Cx̃k+Hp

]T
, (24)

and

F̃d,k =
[
Fd,k · · · Fd,k · · · Fd,k

]T
. (25)

Defining the prediction error Ẽk as the difference between
F̃d,k and the free response of the system,

Ẽk = F̃d,k − diag(C) [Ψx̂k + Υuk−1] , (26)

the cost function (23) can be written as

Wk = (Θ∆Ũk−Ẽk)T δ(Θ∆Ũk−Ẽk)+∆Ũk
T
λ∆Ũk . (27)

Developing (27), computing the gr we obtain

Wk = ẼT
k δẼk− 2∆Ũk

T
ΘT δẼk + ∆Ũk

T
(ΘT δΘ +λ)∆Ũk .

(28)
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Fig. 2. Two views of the experimental setup. A lightweight 4-DoF WAM
robot from Barrett Technology equipped with a 6-DoF JR3 force sensor
interacts with a 3-DoF robot (called Heartbox) that generates 3D beating
heart motion. An ex vivo heart is attached to the Heartbox and used as target
for the WAM robot.

Developing (27), computing the gradient and set it to zero,
we obtain the optimal and unique solution ∆Ũk equal to

∆Ũk = (ΘT δΘ + λ)−1ΘT δẼk . (29)

Imposing δ ≥ 0 and λ > 0 assures that the Hessian of (27)
is a positive-definite matrix, which is enough to guarantee
that (29) is a minimum. According to the MPC strategy
previously described, the first element ∆ũk+i|i=0 of the
optimal increment sequence (29) is added to the previous
command uk−1 and sent to the AOB control loop as uk. All
the computation is repeated at each sampling time.

IV. EXPERIMENTAL RESULTS

This section presents experimental results based on heart
motion compensation capabilities and heart stiffness mis-
matches. The robotic platform used in the experiments is
presented in Fig. 2. It is composed by a lightweight 4-
DoF WAM robot used as a tool holder, a Heartbox and
a 6-DoF JR3 force sensor (only the 3D Cartesian force is
measured and filtered by a Kalman filter). The Heartbox is
a 3-DoF robot used to reproduce 3D heart motion, where
objects can be attached and used as targets. The cascade
MPC-AOB controller described in Sections III-A, III-B and
III-C is implemented on a 2.1 GHz Intel Core 2 processor
running Xenomai-Linux. The communication to the WAM
robot is performed by CAN bus. Integrity of the WAM robot
is checked through protection functions, such as maximum
joint velocity, maximum joint torque, workspace limitation
and maximum forces. The control sampling time Ts is set to
1 [ms].

A two-step procedure is used to tune AOB and MPC
parameters. In the first step, the AOB controller is designed
to guarantee a robust stable plant, assuring good force
tracking performance. Then, the MPC based on the model
of this stable plant, is tuned to compensate external force
disturbances due to heart motion.

A. AOB Design
Critically damped behaviors are appropriate for force-

based tasks, since they represent the fastest response without
overshoot. For a desired contact model K̂s = 900 [N/m], a
damping K2 = 10, and a desired Gcl given by (10) with
Tcl = 3 [ms], the following state feedback gain

Lr =
[

161.5 1.189 0.557
]

(30)

is obtained. This Tcl entails a control bandwidth of about
34 [Hz], which is more than enough to track cardiac distur-
bance. The stochastic parameters reflect the model reference
adaptive control strategy, where the uncertainties are lumped
in pk. Rk is set to 1 and Qk is given by (see (14))

Qxr,k
=

 10−12 0 0
0 10−12 0
0 0 10−12

 (31)

and
Qpk

= 0.5 . (32)

This stochastic design entails the AOB Kalman gain

Kk,f =
[

0.1236 8.145 0.662 0.662
]T
. (33)

B. MPC Design
The length of the prediction horizon Hp greatly influences

control tracking capabilities. Extending Hp, a more accurate
system is achieved but the computational time increases.
Since our control sampling time is Ts = 1 [ms], a good
trade-off is achieved with Hp = 30 and Hu = 5. The optimal
command ∆ũk+i|i=0 is computed by minimizing the cost
function W , with

λ = 0.1Iu (34)

and
δ = 0.9Ip, (35)

where Iu and Ip are identity matrices of size Hu and Hp,
respectively.

C. 3D Physiological Motion Compensation
Our control architecture is designed to compensate respi-

ration and heartbeat disturbances autonomously. To evaluate
compensation capabilities of the cascade MPC-AOB con-
troller, respiration and heartbeat signals along three axes are
generated by the Heartbox. They are based on physiological
motion data recorded during in vivo experiments on a pig’s
heart [28]. The WAM robot applies surgical forces on the
moving heart attached to the Heartbox, and the goal is to
track them. Due to the soft nature of the heart, Heartbox
motion seen by the WAM robot is different from the one
generated by the Heartbox. Fig. 3(a) represents the force dis-
turbance induced by beating heart motion along three axes.
This disturbance is computed from WAM robot Cartesian
positions and residual force measurements recorded during
two experiments. WAM robot displacements with the Heart-
box turned on are subtracted from those with the Heartbox
turned off. These displacements divided by the estimated
heart stiffness2 810 [N/m] are mapped into force. Then,

2This estimation is done off-line from force and displacement data.
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adding residual forces from the experiment with Heartbox
turned on leads to the force disturbance induced by the
Heartbox. Making spectral analysis, we can clearly identify
two main sources of disturbance: breathing and heartbeat
motions (see Fig 4). The first two peaks represent respiration
(0.34 [Hz] and 0.72 [Hz]), corresponding to 20 breathing
cycles per minute. The last five peaks are due to heartbeats
(1.25 [Hz], 2.53 [Hz], 3.78 [Hz], 5.08 [Hz] and 6.32 [Hz]),
which correspond to 75 heartbeats per minute.

3D motion compensation results are shown in Fig. 3 for
X , Y and Z. Blue, green and red curves in Fig 3(a) represent
Heartbox motion seen by the WAM robot. The heart signals
start at 5 [s] and are repeated for around 20 [s] after a
one second pause. Fig 3(b) shows desired (black curve) and
applied forces (blue, green and red curves). The desired force
is constant and equal to 0 [N] for X and Y , and for Z it
is composed by positive and negative ramps followed by a
sinusoid with increasing frequency from 0.2 [Hz] to 1 [Hz].
Residual forces are presented in Figs. 3(c), 3(d) and 3(e).
The peak-to-peak amplitudes are around 0.4 [N] and the
root-mean-square (RMS) values are less than 0.08 [N] for
all axes, which correspond to residual motion in the order of
0.1 [mm], considering a heart stiffness of 810 [N/m]. Black
curves in Figs. 3(c), 3(d) and 3(e) represent residual forces
with the Heartbox turned off.

D. Robustness

The heart surface is composed by different tissues, such
as fat, muscle, and arteries. During surgery the surgeon may
interact not only with these tissues but also with surgical
tools. Typical stiffness values for fat tissues are 300 [N/m].
The cardiac muscle (myocardium) ranges from 600 [N/m]
to 1200 [N/m], and surgical tools (e.g., needle, stabilizer)
have more than 1600 [N/m]. Our cascade MPC-AOB con-
trol architecture requires an approximate knowledge of the
environment stiffness (see K̂s in (6)). We chose to set K̂s =
900 [N/m], which is the typical value of the myocardium
stiffness. To assess robustness of the controller, the heart
attached to the Heartbox is replaced by other objects, such as
pillow and sponge. Off-line analysis have shown that pillow,
heart and sponge stiffnesses are 375 [N/m], 810 [N/m] and
1900 [N/m], respectively.

Table I shows experimental results for stiffness mis-
matches under physiological motion for 3D constant force
references (0 [N] for X and Y , and −5.0 [N] for Z). Peak
to peak amplitudes of the residual forces and corresponding
RMS values are not too affected by stiffness mismatches.

V. CONCLUSIONS

This paper has presented a robot control architecture for
beating heart surgery relying on force feedback. We have
proposed an architecture where model predictive control
(MPC) drives an active observer (AOB) for autonomous heart
motion compensation. This cascade MPC-AOB controller
has two loops. The AOB inner-loop imposes a desired and
stable closed-loop dynamics, based on non-linear feedback
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TABLE I
RESIDUAL FORCES UNDER STIFFNESS MISMATCHES

Pillow (375 [N/m]) Heart (810 [N/m]) Foam (1900 [N/m])

X
peak-to-peak [N] 0.39 0.38 0.39

RMS [N] 0.08 0.08 0.07

Y
peak-to-peak [N] 0.34 0.35 0.35

RMS [N] 0.06 0.06 0.05

Z
peak-to-peak [N] 0.51 0.44 0.39

RMS [N] 0.09 0.08 0.08
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linearization, augmented state-feedback, and stochastic de-
sign. The MPC outer loop generates force references for
AOB control by predicting the applied force in a finite
time horizon. The MPC algorithm requires knowledge of the
inner-loop model, as well as desired and measured forces.
A 3-DoF Heartbox robot equipped with an ex vivo heart
generates 3D heart motion, which has been recorded during
in vivo experiments on a pig’s heart. To test our MPC-AOB
control architecture, a 4-DoF WAM robot with a force sensor
at the tip applies controlled surgical forces on the moving
heart. Heart motion compensation capabilities, surgical force
tracking and robustness to stiffness mismatches have been
evaluated through ex vivo experiments. High quality results
have been achieved. Residual peak-to-peak forces smaller
than 0.5 [N] have been attained without knowing a priori
complex and chaotic heart motion. Additionally, robustness
analysis has been performed for several stiffness mismatches
in the presence of heart motion (by using sponge and pillow
as targets), showing good force tracking performance. The
proposed MPC-AOB control architecture has been compared
with stand alone AOB and MPC ones showing merits of
the MPC-AOB approach. Well structured surgical tasks (like
knot tying, or biopsy) can potentially benefit from MPC
approaches since force references can be estimated from pre-
vious surgeries. However, even without knowing in advance
force references, we show in this paper that by making MPC
computations with the current surgical force reference, the
MPC-AOB control performance is quite interesting.
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