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Abstract— In this paper we propose to drive an actuated
orthosis using an adaptive controller based on a reference
model. It is not necessary to know all the functions of the
dynamic model. Needing only the global structure of the
dynamic model, we use a specific adaptive controller to obtain
good performance in terms of trajectory tracking both in
position and in velocity. A Multi-Layer Perceptron Neural
Network (MLPNN) is used to estimate dynamics related to
inertia, gravitational and frictional forces along with other
unmodeled dynamics. The Lyapunov formalism is used for
stability study of the system (shank+orthosis) in closed loop and
to determine adaptation laws of the neural parameters. To treat
the non-linearties related to the MLPNN, we have used first
order Taylor series expansion. Experimental results have been
obtained using a real orthosis worn by an appropriate dummy.
Several tests have been realized to verify the effectiveness and
the robustness of the proposed controller. For instance, our
proposed orthosis model has given robust tracking performance
under assistive as well as resistive forces.

I. INTRODUCTION

Wearable robots (exoskeletons/orthoses), which are used
in various fields such as rehabilitation of upper or lower
human members, are becoming a mature research field [1].
These wearable robots are represented by a weared actuated
system and animated by actuators that can be assimilated to
artificial muscles. Exoskeletons can also be used to improve
comfort and provide assistance in daily tasks (gardening,
carrying heavy loads, climbing stairs, etc.). One of the main
scientific issues addressed for this type of robot, is related
to the design of efficient controllers. The identification of
parameters or dynamic behaviors is also considered. More
generally, the challenge now is to improve the cognitive
abilities of exoskeletons to enable them to learn, adapt and
make decisions based on their own mistakes in the same way
as humans.

For research purposes, several exoskeletons have been de-
veloped and experimented like Vanderbilt exoskeleton [2][3].
For exoskeletons that are already marketed, we can cite
the exoskeleton namely Ekso [4]. It has been conceived by
bionic society and allows its wearer, having any lower limb
deficiency, to easily realize basic movements as for instance,
stand up and walking [5]. Unfortunately the problem of
lateral stability remains unsolved for these exoskeletons.
The University of Berkeley has recently developed a lower
limb exoskeleton called BLEEX that allows the holder to
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carry heavy loads [6]. Another kind of exoskeleton namely
”Hercules” has been made to improve the performance of
soldiers [7]. Furthermore, a good state of the art on the
exoskeletons and their applications is given in [8][9].

For these complex systems composed of exoskeleton and
its wearer, it is not certain that conventional controllers en-
sure the expected performance mainly if the wearer develops
assistive or resistive efforts. These controllers become clearly
inefficient in case of external disturbances. So, to construct
robust controllers taking into account of all these unmodeled
dynamics constitutes a real challenge from robotic point of
view. In this context, several control techniques are proposed
in the literature. Some of them are based on a preliminary
identification of the dynamic parameters of exoskeleton and
its wearer [10][11]. This kind of technique can be efficient
when the exoskeleton is to be worn by the same person in an
invariant environment. Some other approaches are adaptive
and can be dedicated to generic exoskeletons that can be
worn by humans of different morphologies [12][13]. We can
also find several works on nonlinear control of exoskeletons
[14][15].

In this work, we propose to develop and experiment a new
nonlinear adaptive controller to drive an actuated lower limb
orthosis. The orthosis considered here has been conceived
for rehabilitation reasons. The overall system composed of
this actuated orthosis and the knee of wearer, has a complex
dynamic that is not obvious to express by conventional
differential equations. The goal here is to help the wearer
to follow the desired trajectories both in position and in
velocity. A therapist having served in rehabilitation of human
lower limbs, has the task of defining these trajectories. In
the developpement of the proposed adaptive controller, no
prior knowledges are needed about the human asked to wear
the actuated orthosis. These knowledges can be the height
and the weight of the patient, etc. Only the structure of
the dynamic model is needed and we use the Lyapunov
formalism to guarantee the system stability in closed loop. A
MLPNN, considered as a universal approximator [16][17], is
chosen to estimate unknown dynamics. It is associated to a
Proportional Derivative (PD) gains to avoid any undesirable
behavior predominately at the initialization step. An expert
using an adequate reference model [19] can describe, a priori,
the desired dynamic. As the proposed controller is adaptive,
different wearers having not the same morphologies can wear
the actuated orthosis.

The paper is organized as follows. In section II, the
description of the used actuated knee orthosis is given.
The section III is dedicated to the controller design. The
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experimental results with analysis, are given in section V.
Finally, the section VI is the conclusion of the present work.

II. ACTIVE ORTHOSIS SYSTEM

We consider for our experimentations an actuated orthosis
worn by a dummy. Two jointed segments (upper and lower)
compose the active orthosis. The actuator and the mechanical
part are placed on the upper part of the orthosis. The torque
generated by the orthosis permits to realize flexion/extension
movements of the lower part composed by the shank of the
wearer and the lower part of the orthosis. For security reason,
the knee joint motion is imposed between 0 and 2π

3 rad. In
Figure 1, we present an actuated knee joint orthosis worn by
a dummy.

Fig. 1. An actuated knee joint orthosis worn by a dummy

A. Electrical part

The joint of the orthosis is actuated by a brushless DC
motor (BLDC). A power supply and an adequate electrical
system are used to provide the motor’s current regulation.
A mechanical transmission is used to increase the orthosis
applied torque. Furthermore, we assume neligible the time
constant of the electrical system compared to the mechanical
time constant. With this assumption and according to regula-
tion system characteristics of the BLDC motor, we can write
the following equation:

τ = µmu (1)

where u is the electrical current of the BLDC motor, τ is the
applied torque and µm is a positive constant. Fig. 2 shows
the schematic diagram of the used electromechanical system.

B. Mechanical part

The mechanical structure scheme of the considered active
orthosis is given by Fig. 3. Let q, q̇ and q̈ respectively
the angular position, the angular velocity and the angular
acceleration of the knee joint-orthosis in the sagittal plane.
Where 0 corresponds to the maximum knee extension and
π
2 rad represents the resting position.

The dynamic model is given as follows :

τ + τh = Jq̈ +H(q, q̇) (2)

Fig. 2. Electrical architecture of the joint orthosis actuator

Fig. 3. Position of the joint orthosis

This equation can be expressed as:

q̈ =
1

J
(τ + τh)− 1

J
H(q, q̇) (3)

q̈ =
µm
J

(u+
τh
µm

)− 1

J
H(q, q̇) (4)

where :
• τ is the orthosis generated torque;
• τh represents the human torque and is bounded
• J = Jor + Jh is the inertia of the system (orthosis (or)

+ knee (h)). (J is considered unknown)
• H(q, q̇) represents all dynamics (gravitational torque,

solid friction torque and all other unkown dynamics).
(H is considered unknown).

III. ADAPTIVE CONTROLLER DESIGN

The purpose of this section is to design a robust adaptive
controller in position and in velocity to drive an active
orthosis for rehabilitation reasons. The stability study of the
system (orthosis + wearer) in closed loop is conducted using
the Lyapunov approach. The MLPNN weights are to be
updated using appropriate adaptive laws. The given controller
is designed such that the state vector of the equation (6)
tracks the state vector of the reference model given in
equation (8) (reference trajectory). Indeed, the MLPNN is
used to estimate inertia, gravitational and frictional forces
and other non-modeled dynamic effects.
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A. State representation of the dynamic model

Let x ∈ R2×1 be the state vector defined by:

x =

[
q
q̇

]
(5)

To derive the control laws, the dynamic model given in (3)
must be rewritten under the form of a state equation:

ẋ = Ax+B(u+
τh
µm

) + C (6)

A =

[
0 1
0 0

]
B =

[
0
µm
J

]
C =

[
0

− 1
JH(x)

] (7)

Let us consider the following reference model:

ẋ
m

= Amxm +Bmr (8)


Am =

[
0 1
am1 am2

]
Bm =

[
0
bm

]
am1, am2, bm ∈ R

For experiments, the reference trajectory is obtained by
choosing the input signal r with quasi-sinusoidal shape. The
output of the reference model denoted by xm=[qm q̇m]T is
then used as a desired trajectory in the control scheme. The
values am1 , am2 and bm are chosen so that the reference
model (8) works as a stable second-order system.

B. Control law

Before giving the control law expression, consider the
following errors:

e = xm − x ∈ R2×1 (9)
xm = x+ e (10)
s = Λe (11)

Λ = [λ 1] ∈ R1×2 λ ∈ R+

ṡ = Λė = Λ(ẋm − ẋ) ∈ R

The proposed control law is given by the following equa-
tion and its principle scheme in figure (4).

u = z(θ) +Ks (12)
K ∈ R+

θ = [x, e, r]T (13)

Taking:

τhµ =
τh
µm

, α =
J

µm
, Hµ =

H(x)

µm

Fig. 4. The proposed adaptive controller scheme.

where z(θ) is a MLPN that the parameters are updated
using the stability study in Lyapunov sense. For the stability
analysis of the system in closed loop, we calculate:

αṡ = αΛ{Amx+Bmr −Ax−B(u+ τhµ)− C}
= αΛ{Amx+Bmr −Ax} − αΛB(u+ τhµ)− αΛC

(14)

as αΛB = 1 and −αΛC = Hµ, we can write:

αṡ = αΛ{Amx+Bmr −Ax} − u− τhµ +Hµ

Using (12):

αṡ = αΛ{(Am −A)x+Ame+Bmr} −z(θ)

−Ks+Hµ − τhµ
= αΛ(Am −A)x+ αΛAme+ αΛBmr

+Hµ − τhµ −z(θ)−Ks (15)

Consider the following function depending on θ :

z∗(θ) = Λα((Am −A)x+Ame+Bmr) +Hµ

Then the equation (15) becomes :

αṡ = −z(θ) + z∗(θ)−Ks− τhµ
= −z̃(θ)−Ks− τhµ (16)

where:
z̃(θ) = z(θ)−z∗(θ)

The function z∗(θ) considered unknown can be represented
by a MLPNN as follows :

z∗(θ) = V ∗Tϕ(W ∗T θ) + ε (17)

where ε is the neural approximation error and W ∗T ∈ Rn×m
and V ∗T ∈ R1×n are the weight matrices between the input
and the hidden layer and between the hidden layer and the
output of the MLPNN respectively, with:
• n the number of neurons in the hidden layer.
• m : size of θ
• ϕ represents the activation function and has a sigmoidal

form.
z∗ can be estimated by z as follows:

z(θ) = V Tϕ(WT θ) (18)
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where the neural parameters W and V are the estimations
of W ∗ and V ∗ respectively. As we will see later, these
parameters are adjusted according to an adaptation law based
on the Lyapunov stability analysis.

The Taylor series expansion of function ϕ(W ∗T θ) on the
estimated parameter (WT θ) can be written as follows [21]:

ϕ(W ∗T θ)) = ϕ(WT θ)− ϕ́(WT θ)W̃T θ −Os
ϕ(WT θ)− ϕ(W ∗T θ)) = ϕ́(WT θ)W̃T θ +Os

ϕ́(WT θ) =


ϕ́(WT

1 · θ) 0 . . . 0

0 ϕ́(WT
2 · θ)

...
...

. . .
0 . . . ϕ́(WT

n · θ)



WT =


W11 W12 . . . W1m

W21 W22 . . . W2m

...
. . .

...
Wn1 Wn2 . . . Wnm

 =


WT

1

WT
2
...

WT
n


W̃ = W −W ∗

Ṽ = V − V ∗, V ∈ Rn×1

Wij ∈ R {i = 1..n; j = 1..m}

where ϕ́(ϑ) = dϕ(%)
d%

∣∣∣
%=ϑ

and Osare the superior-order term

with:
Os = (ϕ− ϕ∗)− ϕ́W̃T θ = ϕ̃− ϕ́W̃T θ

To simplify writing, consider:

ϕ = ϕ(WT θ) ϕ∗ = ϕ(W ∗T θ)
ϕ́ = ϕ́(WT θ)

Finally we can write:

z̃(θ) = V Tϕ− (V ∗T + V T − V T )ϕ∗ − ε
= V T (ϕ− ϕ∗) + (V T − V ∗T )ϕ∗ − ε
= V T ϕ́W̃T θ + V TOs + Ṽ Tϕ∗ − ε
= V T ϕ́W̃T θ + Ṽ T (ϕ− ϕ́W̃T θ −Os) + V TOs − ε
= V T ϕ́W̃T θ + Ṽ Tϕ+ εϕ − ε (19)

εϕ = −Ṽ T ϕ́W̃T θ + V
∗T
Os (20)

εϕ represents the approximation errors rising from the first
order Taylor series expansion. From (20), we can state that
if W̃ → 0 and Ṽ is bounded, then εϕ → 0. Equation (19),
is used in the next section to calculate the adaptation laws
of neural network parameters.

C. Stability study

Consider the following Lyapunov function:

L =
α

2
s2 +

1

2δ1
tr(W̃T W̃ ) +

1

2δ2
Ṽ T Ṽ (21)

δ1 > 0 δ2 > 0

By differentiating (21), we get:

L̇ = αsṡ+
1

δ1
tr(W̃ẆT ) +

1

δ2
Ṽ V̇ T (22)

using the equations (16) and (19), we get:

αsṡ = −sz̃(θ)−Ks2 − τhµs
= −sV T ϕ́W̃T θϕ+ sε− sεϕ −Ks2 − τhµs

From (16), we can write :

L̇ = −sV T ϕ́W̃T θ − sṼ Tϕ+ sε− sεϕ −Ks2 − τhµs

+
1

δ1
tr(W̃ẆT ) +

1

δ2
Ṽ V̇ T

Le us consider the follwing adaptation laws:

Ẇ = δ1θsV
Tϕ′

V̇ = δ2ϕs
(23)

We can then have:

L̇ = −Ks2 + sε− sεϕ − sτhµ

To finalise the stability study we have to consider two
cases :

1) There is no neural approximation errors:

L̇ = −Ks2 ≤ 0

Invoking Barbalat’s Lemma, we can say that s goes
to zero because L̇ is checked definite negative. The
system controlled by the (12) is asymptotically stable
and tracks the same dynamics as the reference model.

2) Neural approximation errors are different from zero:

L̇ = −Ks2 + sε− sεϕ − τhµs
L̇ ≤ −Ks2 + |s||ε− εϕ − τhµ|

For V̇ to be negative or zero:

Ks2 ≥ |s||ε− εϕ − τhµ|

s2 ≥ |s||ε− εϕ − τhµ|
K

|s| ≥ |ε− εϕ − τhµ|
K

In this case, overall stability and convergence is ensured
towards a bounded region of radius |ε−εϕ−τhµ|K because ε, εϕ
and τhµ are bounded. Every time s tries to get out of
this region, L̇ becomes negative and the controller draws
it immediately back in.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The performed experimentations have the goal to ensure
the good performance of the actuated orthosis worn by a
human for rehabilitation reasons. The parameters of the ref-
erence model used here, can be quite fixed by a doctor. The
proposed control strategy aims to apply any rehabilitation
program in good conditions. Furthermore, we have used a PC
equipped of a dSpace DS1103 PPC real-time controller card
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and dSpace Control Desk software and Matlab/Simulink.
For these first experiments, an appropriate dummy weighing
25kg and measuring 1.70m have been used. The considered
experimental setup is given in Fig. 5.

Fig. 5. Experimental setup

The real position is measured by incremental encoder.
Furthermore, we applied a low pass first order filter in
the goal to reduce the noise effect concerning the angular
position measurement. The sampling time has been fixed to
10−3 sec. The reference model considered here is given by
the following equation:

ẋm =

[
0 1
−0.5 −1

]
xm +

[
0

0.5

]
r

The controller parameters are given in table 1. As we can

δ1 δ2 K λ n
5 5 40 2 3

TABLE I
CONTROLLER PARAMETERS

see on figure (6), the quality of tracking is satisfactory.
To test the robustness of the proposed controller, we have
applied in the first time a resistive effort on the shank
of the dummy. In the second time an assistive effort has
been applied. These efforts can be considered as external
disturbances since they are not produced by the dummy
itself. Even if the error increases in the case of unknown
external disturbances, it remains bounded and small enough
for a good trajectory tracking. The tracking error is greater in
the case of the resistive force applied in the opposite direction
of the movement. Nevertheless, the proposed control keeps
good performances in term of trajectory tracking. For the
velocity trajectory tracking, we notice the same performances
as for the position. Concerning assistive effort, the tracking
errors improve compared to the free case (no applied effort)
as shown by figure (6). For the resistive case, the trajectory
tracking error increases but remains limited and small enough
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Fig. 6. Position tracking

to keep good performances. As the controller is adaptive, this
error remains stable. As illustrated in figure (9), the control
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−20

−10

0
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20

Time [s]

[°
/s

]
Velocity tracking
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−2

−1

0

1

Time [s]

[°
/s

]

Tracking error

Assistive effortResistive effort

Resistive effort

Assistive effort

Fig. 7. Velocity tracking.

input calculated by the proposed controller shows that the
actuator is not heavily used. Also, the external disturbances
represented by the resistive and assistive efforts, are properly
interpreted by the adaptive controller. This means that the
calculated electrical current input is increased in the resistive
case and considerably decreases in the assistive case. If
the resistive force exceeds the capacity of the actuator, the
controller becomes saturated and the trajectory tracking may
deteriorate. For a real application on a human subject, these
efforts are intrinsic and developed by the muscles. This may
change the behavior of the control signal because the wearer
feels perfectly the applied movements and forces. This means
that it is not possible to apply an extern assistive effort (or an
extern resistive effort) accurately as if it is done by the wearer
himself. The last test made during the experimentation, is
represented by the application of a resisitive effort exceeding
the fixed capacity of the used brushless motor (±2.5 A).
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Fig. 8. Applied control input and MLPNN output.

Although the applied current is in saturation, the system
maintains its stability and the quality of trajectory tracking
remains good.
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V. CONCLUSION AND FUTURE WORK

The control technique that we have proposed and validated
on an active orthosis worn by an appropriate dummy, has
given a good tracking performance. Our objective was to
conceive a controller that requires no prior knowledge on
the dynamic model, takes into account different situations of
the wearer and is robust against external disturbances. We
have chosen a strategy based on a reference model for its
several possibilities including, for instance, the integration of
the rehabilitation protocol that can be described beforehand
by the doctor. We have also used an MLPNN for its char-
acteristic of universal approximation of nonlinear unknown
functions. As the MLPNN parameters are adaptive according
to the laws issued from the stability study in Lyapunov

sense, good performances have been obtained in different
experiments. Furthermore, our expectations concerning the
rapid adaptation to possible changes in the dynamics as
well as the stability of the system in closed loop have been
met. For future work, we shall prepare a specific protocol
to experiment our approach on a person suffering from a
problem of mobility, and are waiting the response from the
competent authority.
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