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Abstract— For an intelligent dynamic motion interaction
between a human and a lower-limb exoskeleton, it is necessary
to predict the future evolution of the joint gait trajectories
and to detect which phase of the gait pattern is currently
active. A model of the gait trajectories and of the variations
on these trajectories is learned from an example data set. A
gait prediction module, based on a statistical latent variable
model, is able to predict, in real-time, the future evolution
of a joint trajectory, an estimate of the uncertainty on this
prediction, the timing along the trajectory and the consistency
of the measurements with the learned model. The proposed
method is validated using a data set of 54 trials of children
walking at three different velocities.

I. INTRODUCTION
An intelligent dynamic motion interaction between a hu-

man and a robotic assistive device, such as a lower-limb
exoskeleton, calls for advanced interaction modes such as
assistance-as-needed in view of physiotherapeutic objectives
(e.g. training, rehabilitation), adaptation to the human (e.g.
variation in time), recognition of the human intent (e.g. to
perform different tasks), etc. A key component in such a
system is a gait prediction module, i.e. a module that can
estimate continuously the movements of the subject wearing
the exoskeleton and that can anticipate future movements.

In contrast to methods that start from a model, such
as [1], or methods that start from a force field and/or a
“virtual tunnel” [2], this paper learns a model of the gait
trajectories from a data set of example gait patterns during a
learning phase. During an estimation and prediction phase,
the joint trajectories are measured, remaining parameters are
estimated and the future evolution of the joint trajectories is
predicted.

The following requirements are imposed on the gait pre-
diction module: it should model the variations in human gait
and adapt itself to the velocity and timing along the joint
trajectories (e.g. walking faster/slower, longer/shorter stride
length, longer/shorter stance phase, etc.); it should predict
in real-time the future evolution of the gait trajectories (i.e.
the model is generative); it should give an estimate of the
uncertainties on this prediction; and it should measure the
consistency of the current gait trajectories with the learned
model.

A lot of research groups have already tackled part of
this problem. For example, Aoyagi [3] predicts the timing
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in real-time, but starts from a single reference trajectory
and does not provide uncertainty or consistency informa-
tion. The method of Troje [4] [5] focuses on analysis and
synthesis of movements and their variations, but does not
allow phase/timing or on-line estimation, and is directly
based on markers. Other work focuses completely on the
analysis in a clinical context, e.g. Federolf [6]. Cheng [7]
uses hidden Markov models and Gaussian Processes Latent
variables models to analyze human gait. Since these models
are mainly for the purpose of human identification, they are
not generative.

The contribution of this paper is to provide a statistical
modeling method that satisfies all of the above requirements.
Analysis tools are provided to optimize the learned model
towards its predictive capabilities. Parameters for the es-
timation/prediction phase are either determined out of the
example data set during the learning phase or have a clear
physical meaning.

II. A GAIT PREDICTION MODULE

This section describes a gait prediction module and how it
fits in a larger control scheme for a lower-limb exoskeleton.
Fig. 1 shows an overview of the system. Using a data set
of nominal gait patterns, an initial learning phase builds
up a model of gait trajectories. The gait is described in
terms of the hip, knee and ankle joint angles in the sagittal
plane. While measuring the current joint angles, this model
is able to predict, in real-time, the further evolution of the
joint angle trajectories, together with a prediction of the
uncertainty of these estimates as well as the velocity and
timing along the trajectory. The gait prediction module is
able to compute a consistency between the measured joint
angles and the learned model. In a constraint-based control
framework [8], weighted and prioritized constraints describe
the control tasks, and at each time step, an optimization
problem is solved to optimally satisfy the given control tasks.
A prediction of the evolution of the joint angles, together
with the estimated uncertainty of this prediction, is used
to formulate impedance constraints on the motion of the
exoskeleton. The velocity and timing along the trajectory
is used to enable additional constraints at certain phases of
the gait. These constraints further assist the user, e.g. by
enforcing ground clearance. Multiple prediction modules can
be simultaneously active. Based on the consistency measure,
the supervisor selects the most appropriate prediction module
and adapts the priorities and weights of the corresponding
constraints. This paper elaborates on the lightly colored
blocks in fig. 1.
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Fig. 1. The use of a gait prediction module for the control of a lower-limb
exoskeleton. The lightly colored blocks are the main topic of this paper.

III. METHODOLOGY

A gait prediction module measures the hip, knee and
ankle joint unilaterally in the sagittal plane. Typical human
gait is modeled and predicted. However, the same method
could be used for more or less joints, using unilateral or
bilateral measurements, and for different types of motion.
It is assumed that, during the learning phase, the joint
trajectories can be segmented using the start and end of the
trajectories or a using periodic event. The case of human gait
over a flat and horizontal surface is further elaborated, the
right side of the exoskeleton is measured, and the segments
are determined by foot strike of the right leg.

A. Segmentation, time normalization and resampling

A joint trajectory f(t) is decomposed into a time normal-
ized trajectory f∗(s):

f(t) =f∗(s(t)) (1)

and a time normalization function s(t):

s =(t− t0)/Ts, (2)

where t0 corresponds to the time offset, s to the path variable,
and Ts to the stride time. f∗ corresponds to the commonly
used time-normalized curves in gait analysis. f∗ is composed
of f∗k , f∗h , and f∗a , respectively the knee, hip and ankle
components.

For the learning phase, the time normalization parameters
(Ts and t0) and the time normalized trajectory f∗ are con-
sidered separately. A learning data set of M time normalized
and sampled paths is represented by the M × d matrix:

F̄ =


...

f∗
k,j(s1) · · · f∗

k,j(sn) f∗
h,j(s1) · · · f∗

h,j(sn) · · ·
...

 (3)

with trial number j = 1 . . .M . f̄j corresponds to the jth
row of F̄ . The joint angles are resampled such that there are
n = 50 samples per joint angle (d = 150). Fig. 2 shows a
plot of a recorded data set. Each curve corresponds to a row
in F̄ .
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Fig. 2. The trajectory in joint space is correlated over time. Data for 54
gait cycles is shown. Samples 1 to 50 correspond to the knee angle, samples
51 to 100 correspond to the hip angle, samples 101 to 150 correspond to
ankle angle.

B. Modeling the normalized joint trajectory

The statistics of f̄ are modeled using a statistical model
with continuous latent variables. This model is learned using
the data set F̄ and results in a concise description of f̄
in function of the vector x containing m latent variables,
where m is a small number (e.g. 3..7). During execution
of the exoskeleton controller, these latent variables are con-
tinuously estimated using measurements of the current joint
angles. The learned model is then used to predict the further
evolution of the joint paths.

Fig. 2 shows that the variations in the normalized tra-
jectories are highly correlated for different values of s and
different joints. Chao [9] also indicated this. The modeling
method should be able to take into account these correlations
over a larger time horizon. Existing statistical representation
of trajectories such as Gaussian Mixture Models (GMM) [10]
or Stable Estimator of Dynamical Systems (SEDS) [11] only
take into account more localized correlations.

Therefore, this paper takes a different approach where the
variations on top of the nominal trajectory are modeled using
a linear latent variable model. Fig. 3 depicts the following
latent variable model:

f̄T = H̄∗x∗ + b̄∗ + ε̄. (4)

H̄ is a 150×m matrix containing m modes, x is a m× 1
vector of latent variables, b̄∗ is a 150× 1 vector containing
the averaged time-normalized gait trajectories. ε̄ is a 150×1
Gaussian distributed vector:

ε̄ ∼ N
(
0, σ2I

)
. (5)

The latent variables x∗ are distributed as N (0, I). This
model results in the following distribution for f̄T :

f̄T ∼ N
(
0, H̄H̄T + σ2I

)
. (6)

The parameters H̄ , b̄∗ and σ2 are estimated from the data
set using maximum likelihood. This could be done with
expectation maximization (EM), but as Tipping [12] proved,
this model is closely related to principle component analysis
(PCA) and the maximum likelihood estimates can be com-
puted in a similar way. The model in equation (4) is referred
to as probabilistic principle component analysis (PPCA).
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Fig. 3. Probabilistic graphical model (Bayesian network) with continuous
variables. See [13] for the graphical notation.

It results in the following expressions for the maximum
likelihood estimates b̄∗ML, σ2

ML and H̄∗
ML of the parameters

of model (4):

b̄∗ML = mean(f̄T ) (7)

σ2
ML =

1

d−m

d∑
j=m+1

λj (8)

H̄∗
ML = Um(Λm − σ2

MLI)
1/2R, (9)

where Um are the principal eigenvectors of S with corre-
sponding eigenvalues λ1,. . . ,λm in the diagonal matrix Λm,
Λm = diag(λ1 · · ·λm), and R is an arbitrary rotation.
S is the sample covariance matrix of f̄T [12][13]. In
contrast to the classical PCA, the columns of H̄∗

ML are not
normalized, and H̄∗

ML can be arbitrarily rotated with the
rotation matrix R.

Fig. 4 illustrates this decomposition into a number of
eigenvectors (also called modes, loadings or coefficients).
The gait curves for hip, knee and ankle on the right can
be generated from the model when the vector x of latent
variables is known.

The number of modes, m, still remains to be determined.
Section IV will discuss a cross-validation procedure to
determine this number of modes.

Using the model (4), the function f∗(s,x∗) =
[f∗k (s) f∗h(s) f∗a (s)]T can easily be derived:

f∗(s,x∗) =

h∗
k,1(s) · · · h∗

k,m(s)

h∗
h,1(s) · · · h∗

h,m(s)

h∗
a,1(s) · · · h∗

a,m(s)

x∗ +

b∗k(s)b∗h(s)
b∗a(s)

+ ε,

The functions of the type h∗k,j(s) and b∗k(s) are one-
dimensional interpolation functions for the appropriate el-
ements of the matrix H̄∗ and b̄∗ of the model (4).

In summary, the latent variable model as a continuous
function of s is written as:

f∗(s,x∗) = H∗(s)x∗ + b∗(s) + ε. (10)

x∗ is a m×1 vector ∼ N (0, I). f∗ and b∗ are 3×1 vector
functions, H∗ is a 3×m matrix functions, and ε is a
3×1 vector of Gaussian white noise.

C. Modeling the time normalization function

The time normalization function (2) is using two parame-
ters, the stride time Ts and the time offset t0. The statistics
for these parameters (mean and covariance) are estimated
from the learning data set.
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Fig. 4. The latent variable model describes a gait with a limited number
of parameters.

D. Real-time estimation of a trajectory
A real-time iterated extended Kalman filter (IEKF) es-

timates both the value of the latent variables x∗ in the
model (10) and the time normalization parameters Ts an t0
using the current measurements of the exoskeleton joints.

The state is described by the latent variables x∗, the offset
s0 = t0T

−1
s and the velocity v = T−1

s :

x =
[
x∗T v s0

]T
. (11)

The parameters v and s0 are chosen instead of Ts and t0 to
decrease the non-linearity of the IEKF. The evolution of the
state x is expressed using the process model:

xk+1 = xk + ρp, (12)

with ρp ∼ N (0,Q), where Q is the covariance matrix on
the normally distributed process uncertainty ρp.

For the current measurements of the joint angles, a mea-
surement model is written as:

z = h(x, t) + ρm, (13)

with ρm ∼ N (0,R), where R is the covariance matrix on
the normally distributed measurement uncertainty ρm.

The IEKF linearizes this measurement model using a first
order Taylor approximation around the current estimate xk:

z = h(xk, t) +
∂h

∂x

∣∣∣∣
xk,t

(x− xk) + ρm (14)

The measurement function h is determined using the
model (10) and the time normalization function in (2):

h(x, t) = H∗(vt+ s0)x∗ + b∗(vt+ s0) (15)

The measurement Jacobian in (14) is computed using:

∂h

∂x

∣∣∣∣
xk,t

=

[
∂h

∂x∗
∂h

∂v

∂h

∂s0

]
(16)

with:
∂h

∂x∗ = H∗(vt+ s0) (17)

∂h

∂v
=

(
∂H∗

∂s
x∗ +

∂b

∂s

)
t (18)

∂h

∂s0
=

∂H∗

∂s
x∗ +

∂b

∂s
(19)
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The partial derivative ∂H∗

∂s is pre-computed during the
learning phase using numerical differentiation of H∗(s).

Using the above formulation of the state, the process equa-
tion and the measurement equation, an IEKF is formulated
to continuously estimate the variations in the gait pattern, the
stride time and the time offset.

A few tuning parameters remain. An obvious choice for
the measurement uncertainty ρm is ε in the model (10). The
process uncertainty ρp tunes the variability of the gait over a
longer time. It models how fast the user can speed up or slow
down his walking pattern during gait. The initial estimates for
the state x are determined as follows: The model (10) gives
the initial value and uncertainty on x∗, i.e. x∗

0 ∼ N (0, I).
The initial value and uncertainty of v and s0 are determined
from the statistics of the stride time and the time offset.

Once an estimate of x is obtained, the future evolution of
the trajectory is given by:

zpred = h(x, tf ) + ρpred, (20)

where tf corresponds to a future time and where ρpred ∼
N (0,Rpred) corresponds to the uncertainty on the predic-
tion. The covariance Rpred of ρpred is given by:

Rpred =
∂h

∂x

∣∣∣∣
x,tf

P
∂h

∂x

∣∣∣∣T
x,tf

, (21)

where P corresponds to the uncertainty of the state x as
computed by the IEKF.

E. The consistency between model and measurements

As previously explained, it is important to monitor contin-
uously the consistency of the measurements with the model.
In this way, the consistency of all running prediction modules
can be determined. Based on this, the supervisor module in
the controller of fig. 1 will choose the currently active motion
and constraints. The consistency of the previously established
IEKF is determined using a normalized innovation squared
(NIS) test for each of the joint measurements and a summed
normalized innovation squared (SNIS) test [14]. The NIS
value follows a χ2-distribution with 1 degree of freedom.
The SNIS value for all joint measurements together follows
a χ2-distribution with 3K degrees of freedom, where K is
the number of NIS values that are summed.

F. Mapping uncertainty to impedance

Uncertainty is mapped to impedance by noting the simi-
larity between the expression for potential energy and for the
probability of deviation from the mean value for a Gaussian
distribution. The impedance described here mainly consists
of stiffness matrix K in joint space for each point along the
trajectory. On the one hand, for a deviation δ, and a stiffness
matrix K, the potential energy α is equal to:

α =
1

2
δTKδ. (22)

On the other hand, if the uncertainty is modeled as a
multivariate Gaussian distribution with covariance matrix
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Fig. 5. Choosing the number of modes based on a cross-validation
experiment for a training based on sagittal hip, knee and joint angle. The
selected number of modes is indicated.

Ptr = Rpred(x, tf ), an ellipsoidal region can be defined:

δTP−1
tr δ ≤ β, (23)

such that there is a probability p that the deviation is
inside the region. β is given by the inverse cumulative
χ2-distribution for p with k = 3 degrees of freedom. From
(22) and (23), a stiffness matrix K is determined such that a
probability p of the measured population results in a potential
energy of α or lower:

K =
2α

β
P−1

tr . (24)

This equation gives a mapping between the covariance and
a stiffness matrix. This expression allows the exoskeleton
controller to give less support (lower stiffness) when the joint
trajectory is uncertain.

IV. RESULTS AND DISCUSSION

A. Measurement protocol

A data set for the typical gait of children was established.
A standard 3D gait analysis was performed for each included
child. Retroreflective markers were then positioned on bony
landmarks of the lower limbs as defined by the Plug-In-
Gait model of Vicon 1 (Oxford Metrics, Oxford, UK). The
children walked on a 10-m walkway at a self-selected speed.
Eight infrared Vicon 1 camera’s (measuring at 100 Hz)
detected the motion of the lower limb markers while the child
was walking. Workstation and Polygon software (Oxford
Metrics, Oxford, UK) were used to define the gait cycles,
to determine the spatio-temporal parameters, and to estimate
the joint angles. Each child walked three trials at self-selected
speed, three trials at a lower speed and three trials at a
higher speed. The gait of seven children was analyzed. Each
measurement was visually evaluated for quality. This resulted
in measurements of 54 gait cycles for the sagittal motion of
the right hip, right knee and right ankle joint. Fig. 2 shows
the resulting data.

B. Learning phase

The data set is used to learn the parameters of the
model (10) using a maximum likelihood criterion, as ex-
plained in section III-B.

A cross-validation procedure was used to determine the
number of modes m. The data was split up into a training
data set and a validation data set containing the gait cycles
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Fig. 6. Estimation of the gait. On the left side, the initial estimate is
shown; on the right side, the estimate after 0.3s. The red curve indicates
the actual gait pattern. The thick red curve indicates the measurements. The
blue curve shows the actual estimate of the gait trajectory.

of one subject. This was repeated for each subject, each time
resulting in a different training and validation data set.

For each training/validation pair, the learning method of
section III-B is applied for different values of m, ranging
from 0 to 25. Using the learned model, the validation data
is then used to evaluate the model: The joint measurements
from time 0s to 60% of the stride time Ts are used to predict
the joint trajectories for the whole gait cycle. The root mean
squared (RMS) prediction error is determined between the
predicted gait cycle and the measured joint trajectory. This
resulted in fig. 5. When the number of modes m is very
low, the RMS prediction error is high because the model
does not capture all variations present in the data set. When
the number of modes m is high, the RMS prediction error
increases due to overfitting. Based on the fig. 5, m = 5
modes are used for the learned model.

C. On-line estimation

One subject is left out of the data set to obtain a training
data set that is used to learn a model of the gait patterns.
One of the trials of the subject is used to perform the on-
line estimation. Fig. 6 shows the results. Initially, at time
t = 0s, there are no measurements. The initial estimate for
the stride time Ts = 1.43s is far away from the actual stride
time Ts = 0.79. The initial estimate of the time offset t0 =
0.1s, while the actual time offset is t0 = 0s. The left hand
side of fig. 6 shows that there is a large difference between
the initial prediction of the gait curve and the actual gait
curve. The right hand side of fig. 6 shows the prediction
results after measuring the three joint angles for 0.3s (or
approx. 38% of the gait cycle). The estimated gait trajectories
converged towards the actual gait pattern. At time 0.3s, the
RMS prediction error for the hip, knee and ankle joint is
respectively 2.0 degrees, 3.0 degrees and 2.8 degrees.

Fig. 7 shows the time evolution of the estimated parame-
ters. The evolution of the states x∗ remains consistent with
the distribution x∗ ∼ N (0, I) of the gait pattern model: the
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Fig. 7. The evolution of the estimate for the state (latent variables), for
the stride time Ts, and time offset t0. The normalized innovation squared
(NIS) for the measurements of the hip (blue), knee (green), and ankle (red).

95% two-sided significance interval for each of the elements
of x∗ is 2.24. The stride time Ts evolves within 200s to the
actual stride time Ts = 0.79. The time offset evolves very
quickly close to the actual value for t0 = 0.0s.

D. Analysis of the performance

To analyze the performance of the gait prediction, a
similar cross-validation procedure is used as before. Table I
summarizes the results. This table gives the results when no
measurements are used, i.e. when just the averaged curves
of the training data set are used, when 60% of the gait cycle
is measured, and when 100% of the gait cycle is measured.
Table I assumes that the stride time Ts and time shift t0
were known, i.e. it assumes time normalized trajectories.
The results of this table were computed using five modes
(m = 5).

The second column shows the results when the training
and validation data set are both equal to the complete data
set. The RMS prediction errors are lower since there are
no unknown trajectories during the prediction phase. The
prediction error after 100% of the gait cycle shows the limits
of the linear model used in this paper. Even with 20 modes,
this error is still 1.4 degrees.

There was more variability in the ankle joint trajectories.
Table I also shows the results when only hip and knee are
considered.

As a final remark, this paper considered the gait of
children. These children were asked to walk at three different
velocities. Furthermore, children have a less developed and
systematic gait pattern compared to adults. These factors
contributed to the variability of the gait patterns.

In conclusion, the method proposed in this paper can
reduce the prediction error by half compared to methods that
start from an averaged curve.

E. Which part of the gait cycle is the most informative?

The prediction method can be used to deduce the interval
of the gait cycle that is the most informative for predicting
the variations in the gait pattern. This becomes interesting
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TABLE I
RMS ERROR ON PREDICTION

Cross-validation Complete data set
[deg] [deg]

Hip, and knee:
No measurements 5.5 4.8
After 60% of gait cycle 2.5 1.9
After 100% of gait cycle 1.7 1.3

Hip, knee and ankle:
No measurements 6.1 5.4
After 60% of gait cycle 3.2 2.3
After 100% of gait cycle 2.7 1.9
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Fig. 8. Prediction of hip and knee joint trajectories: (a) RMS prediction
error of the gait estimator for an interval with a given start sample and
size, (b) RMS prediction error for intervals starting at sample 20, (c) RMS
prediction error for intervals starting at sample 45.

when only hip and knee are measured and predicted. When
hip, knee and ankle joints are measured and predicted,
information gain is more evenly distributed over the gait
cycle.

Using cross-validation, fig. 8a shows a color plot indi-
cating the RMS prediction error for measurement intervals
starting at a given sample and with a given size. Figures 8b
and 8c show cross-sections of this color plot. Fig. 8b plots
the performance of intervals starting at sample 20. Fig. 8c
plots the performance of the intervals starting at sample 45.

It can be seen from these plots that the region around
sample 20 (40% of the gait cycle) is highly informative.
This region falls in the single stance phase of the gait. On
the other hand, the region around sample 45-50 (90% - 100%
of the gait cycle) is uninformative. This region corresponds
to end of the swing phase near foot strike.

V. SUMMARY AND FUTURE WORK

A statistical continuous latent variables model for human
gait is developed based on probabilistic principle component
analysis. This model takes into account both the nominal
joint trajectories of human gait, as well as the variations
on these trajectories. It can estimate and predict in real-
time the evolution of the joint trajectories, uncertainty of
the predictions and the consistency of the model.

A data set of 54 trials of children walking with different
velocities is used to validate the proposed method.

Future work will use this gait prediction module on the
exoskeleton developed in the MIRAD project with adaptive
compliant joints based on the MACCEPA principle[15]. A
constraint-based control framework based on [8] will be
integrated with the gait prediction module. The mapping
explained in section III-F provides a good starting point to
map the estimated trajectories to impedance trajectories. A
single tuning factor between uncertainty and potential energy
will be used for all joints. The methodology of this paper
can also be used to estimate the kinetics together with the
kinematics. The speed of convergence will depend on the
number of modes that are necessary to model the kinetics.
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