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Abstract— Living organisms are characterized by their
smooth adaptability to environmental changes and their ro-
bustness against morphological modifications. To investigate
the computational mechanisms behind such learning scheme,
we proposed tacit learning as a novel learning method. In
tacit learning, there are no clear distinctions between learning
and motor control: learning is a simple accumulation process
embedded in the controller. In previous work, tacit learning
was applied with success to bipedal locomotion of a 36 DoF
humanoid robot. In this paper, we generalize the structure
of the controller such as applying adaptive integration to
a wider range of systems and behaviors. This is achieved
by applying the principle of tacit learning in a hierarchical
fashion, in which the value of a virtual periodic dynamic
variable is tuned for continuous adaptation. This resulting
PD-PI (proportional-derivative periodic-integration) controller
preserves the advantages of tacit learning that the controllers
do not include any prior knowledge of the system in which
they are embedded. It also shares with biological systems the
property that control and adaptation progress without explicit
distinction between them.

I. INTRODUCTION
Living organisms are characterized by their smooth adapt-

ability to enviromental changes and their robustness against
morphological modifications, e.g. due to aging or changes
in muscle mass. Tacit learning was introduced to model
the learning aspect of such control strategy [1]. In tacit
learning, there are no clear distinctions between learning and
motion controls: learning is embedded in the controllers,
which update themselves in a continuous manner during
action. Furthermore, the learning strategy does not rely on
the explicit minimization of a global score function. This
distinguishes tacit learning from the learning and adaptation
methods such as artificial neural-networks [2][3], reinforce-
ment learning [4][5][6] or GA [7]. Controllers are indepen-
dent, interacting one with another only through their relative
effect on the environment. A higher-level control architecture
that orchestrates the action of these controllers for achieving
a given task is not used. The learning scheme of tacit learning
is based on simple signal accumulation. Each controller
tunes its own activity based on integration of errors. Such
learning strategy also plays a significant role in biological
systems, e.g. in the long term depression of cerebellum [8][9]
or in immune systems [10]. Tacit learning has two clear
advantages. First, no model of the system is used therefore
high adaptability can be achieved. Second, it shares with the
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Fig. 1. Block diagram of the controller for tacit learning

biological control system the property that behavior control
and adaptation to the environment progress without explicit
distinction between them. In previous papers, we applied
tacit learning by using the output of the controller as the
error to be integrated by the controller. The corresponding
proportional-derivative-input integration (PD-II) controller is
presented in Figure 1. Applying this controller to a 36
DoF bipedal robot pre-implemented only with a very crude
walking reflex resulted in the emergence of a gait that was
highly adapted to the environment [1][11][12]. Tacit learning
by means of task-space feedback error information is also
presented in [13].

In this paper, we present the use of tacit controllers
based on the integration of errors expressed in artificial
error spaces. This will allow to extend the applicability of
tacit-learning while preserving its advantages, i.e. continuous
adaptation of controllers. In the following section, we present
tacit learning and the PD-II controller in details. In Section
III, we investigate the applicability of tacit learning when
integrating errors expressed in arbitrary error spaces. We
show that periodicity in integration is required for continuous
adaptation, resulting in a proportional-derivative-periodic-
integration (PD-PI) controller that applies tacit learning in a
hierarchical fashion. This controller is tested in Section IV:
its adaptability is demonstrated as it allowed simulated arms
of unknown characteristics to perform diverses tasks. Finally,
the range of applicability of the controller is discussed. More
specifically we consider use of abstract error spaces, such as
a space defined by markers used for characterizing the status
of motor-impaired patients.

II. PD-II CONTROLLERS

The general expression for a tacit controller is:

2014 5th IEEE RAS & EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob)
August 12-15, 2014. São Paulo, Brazil

978-1-4799-3127-9/6/14/$31.00 ©2014 IEEE 893



Fig. 2. Representations of the Proportional-Derivative-Periodic-Integration Controller in a single dimensional error space. xe represent a position in the
control space corresponding to a zero error in the error space. On the right of the control space, a schematic representation of the virtual adaptive system
is represented. Motion of the system in the undesired direction (i.e. α = π) results in the update of the virtual system through integration of α. The virtual
system stabilizes when the direction of the motion is corrected (i.e. α = 0). A periodic function p is applied to the virtual variable η to unsure such
stabilization occurs.

u = −Kxc + f(q) (1)
q̇ = a (2)

u is the control, xc the state variable expressed in the
control space, K is the proportional and derivative gain
matrices and a the effect to be minimized. f is a function
Rn → Rn where n is the dimension of the vector a. In this
section we briefly present results previously obtained using
a = u and f(q) = kt

Tq where kt is a vector of constant
values. Detailed explanations as well as experimental results
can be found in [12]. Proof of stability is presented in [14].

A 36 degrees of freedom (DOF) humanoid robot was
considered as a m + n rotative joints system. For the
control of m joints, conventional PID controllers were used,
applying trajectories of reference angles provided by the ex-
perimenter. These controllers implemented a crude walking
motion unsuitable for the robot to walk with balance and
rhythm. The remaining n joints were controlled by the PD-II
controllers described in Figure 1 and equations (1) and (2).
Signal accumulation by the integrator of these controllers
due to the effect of gravity provided a process for behavior
adaptation. After around 10 minutes of walking, the robot
acquired balance. The experimental results demonstrated
that that the walking gait that emerged was well adapted
to the environment in terms of walking efficiency, rhythm
adapatation and robustness toward the walking terrain.

These results can be briefly explained as follow. For a
single joint, the PD-II controller can be written:

τ = −kpθ + kdθ̇ + kt

∫
τdt (3)

τ is the torque applied to the joint, θ the angle of the joint,
kp, kd and kt gain values. Motion of θ due to gravitational
forces will results in a non-zero torque, which in turn will
results in integration. Integration will stop and the controller
stabilize for τ being zero, i.e. for the system being in a
configuration in which gravitational effects are minimized.

This approach achieved adaptability:

• All joints are controlled independently and no model
of the robot is used. Therefore the same controller
could be used on robotic systems characterized by other
kinematic parameters, i.e. the PD-II controller adapts to
the system it controls.

• Environmental changes or change in hardware configu-
ration will result in changes in gravitational effects and
resume of the adaptive integration. Action and adapta-
tion are continuous and not divided between “learning
phases” and “action phases”.

This approach could be used for other applications, but
applicability of the PD-II controller is limited to the min-
imization of gravitational effects. In the following section,
we investigate the use of tacit learning for minimization of
other effects expressed in arbitrary error spaces.

III. PD-PI CONTROLLERS

In the previous section, the input to the system (the torque
in the presented example) was used as the “error” to be
minimized by the controller, i.e. integration would occur
until the joint reaches a zero-torque configuration. In this
section we present a tacit-learning based controller suitable
for minimizing an error expressed in arbitrary error-spaces.
The applicability of such controller is wide, as it could
provide adaptability to sytems experiencing environmental
or kinematic changes. A direct application, used for proof
of concept and presented in Section IV, is the control of
robotic arms of different kinematic configurations. But our
final goal is the use of this controller using abstract error
spaces, such as spaces defined by markers characterizing the
status of post-stroke patients with the objective to develop
novel robotic rehabilitation strategies. Thus, this section is
deliberately unspecific in regard of the nature of the system
and of the error space.

A. Task definition

We consider an arbitrary error vector space ξ in which the
system is characterized by a position vector e. We use the
term “error space” rather than “task space” only to indicate
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Fig. 3. The Proportional-Derivative-Periodic-Integration Controller in a 2D error space. The position of the system in the error space is represented by
grey points. ė is the velocity of the system in the error space and D(e) the direction of motion required for task completion. The virtual system is
schematically represented on the right of the error space, and stabilizes for ė being colinear with D(e), i.e. the system performing the task.

that e being the zero vector is the desired position of the
system once the task has been achieved.

We define a task as follow: A task is a function D(e) = d
where d is a unit vector expressed in the error space. The
direction of d indicates the direction of motion suitable for
task accomplishment. According to this definition, at a given
time the robot is executing the task if α, the angle between
d and ė, is small. By specifying a succession of tasks, this
approach is also suitable to define complete trajectory. A
controller has one or two objectives:

• If the system is immobile in the error-space, the con-
troller must induce the motion of the sytem.

• The controller must tune the motion of the system such
as the system executes the task, i.e. the absolute value
of α must be minimized.

To achieve adaptability, the controller must accomplish these
objectives under the constraints that no model of the system
is known; and that learning and control progress in parallel.

B. Controller design

As presented by equation (1) and (2), the form of the tacit
controller for achieving the task under these contraints can
be written:

u = −Kxc + f(q) (4)
q̇ = e (5)

f can be described as the function that tunes the integra-
tion of the error components such as achieving an input u
that induces a suitable motion in the system, i.e. |α| = 0. In
this paper we propose:

f(x) = p(η)aT (x) (6)

p is a periodic function and η a virtual scalar parameter.
p(η) is defined as:

p(η) =
[
p1(η) p2(η) · · · pn(η)

]T (7)

where each function pi(η) is periodic and of range [−1, 1].

a is a function designed to ensure:

f(x) = 0 ⇐⇒ x = 0 (8)

In the rest of the section, we explain this proposed design
of f .

C. One dimension error space

The control strategy described by equations (4) to (8) is
directly applicable for the control of two degrees of freedom
(DoF) systems and two dimensional error spaces. Application
to higher dimensional spaces is presented in Section III-E.
But for clarity in explanation, we first present its application
on a single DoF system and a one dimensional error space.

In a one dimension error space, a(e) = kt, where kt is a
constant positive value, is suitable for ensuring condition (8).
Sinus is also a suitabled function for p. In a one dimensional
error space, α can be of only two values, 0 and π. The system
represented by equations (4), (5) and (6) can be written:

u = −kpx− kdẋ+ kt

∫
sin(η)edt (9)

which is equivalent to:

u = kp(xref − x)− kdẋ (10)

xref =
kt
kp

∫
sin(η)edt (11)

Equation (10) is equivalent to a PD controller with xref

as reference. Under this perspective, the role of integration
is to find dynamically a reference suitable for obtaining a
motion characterized by |α| = 0. Assuming suitable gain
values for kp and kd; and considering a value xe in the task
space for which the error in zero, using xe as reference in
the PD controller would result in achievement of the task.
In robotics, inverse kinematic is usually used to compute
such value of xe. But because of the assumption that no
model of the system is known, possible values of xe can not
be calculated using such analytical method. But it can be
noted that integration in equation (11) results in a continuous
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Fig. 4. Outline of the proposed approach. The reflex motion generator provokes a reflex motion which direction is tuned toward task execution via a tacit
learning controller implemented in a virtual dynamic system.

change in the value of xref . If xe and sin(η) are of the same
sign, this integration will result in a changes of xref such that
motion of the system is performed in a suitable direction, i.e.
α is zero. Similarly, if xe and sin(η) are of opposite signs,
motion will be performed in the opposite direction, i.e. α is
π. Therefore, η must be tuned such as xe and sin(η) are of
the same sign. As the sign of xe is unknown, we propose to
model η as a virtual dynamic variable which values updates
itself when α is not zero:

kpη − kdη̇ + η̈ + kt

∫
αdt = 0 (12)

As a result, if α is not zero, integration in equation (12)
results in a change in the value of η. The periodicity of sinus
(equation 7) ensures that this integration will ultimately result
in a change in the sign of sin(η), therefore in a motion
of the system characterized by α = 0 (Figure 2). If α
is zero, integration in equation (12) stops and η stabilizes
at a suitable value for task execution. Periodicity of p is
the crucial feature that insures that the virtual system will
stabilizes at a suitable value of η.

Periodic integration occuring in the proposed PD-PI con-
troller (Proportional-Derivative Periodic-Integration) results
in the continuously tuning of the controller such as correcting
the motion of the system into one corresponding to task
accomplishment. Integration in the virtual dynamic system
(equation 12) is the adaptive system that updates the con-
troller. Adaptation is achieved in the sense that the controller
continuously updates itself via integration when the system
performs a motion that does not correspond to task execution.

D. Two dimensional error space

The system described in the previous section is directly
applicable to 2DoF systems and 2D error spaces. The cor-
responding schematic representation is shown in Figure 3.
Contrary to one dimensional spaces in which α was in
{0, π}, in 2D space α is in [−π, π]. In a single dimensional
space, a function a(e) = kt, where kt is a non-zero value,
was suitable. For higher dimensions, the virtual system of
equation (12) might result in a value of η such as p(η)e is
the zero vector. Thus, to enforce condition (8), the use of
more complex function is required for a(e). For example:

Fig. 5. Two subsystems are associated to accomplish a task of higher
dimensionality

a(e) =
[
r(e) r(e) · · · r(e)

]
(13)

r(e) = rot(φ+ π/2)e · e (14)

‘·’ is the dot-product, rot(φ + π/2) is a rotation matrice
and φ is a non-zero angle. For p, the following periodic
function can be used:

p(η) =
[
sin(η) cos(η)

]
(15)

Figure 4 presents the block diagram corresponding to the
proposed controller applied to a 2DoF system. Application
of the function a corresponds to the reflex motion generator
as it insures motion of the system if the error is not the zero
vector (equation 8). The resulting motion is characterized by
a velocity ė which has an error angle α with the desired ve-
locity. The controller is tuned via the virtual dynamic system
such as minimizing |α|, resulting in task accomplishment.

E. Extension to higher dimension

The controller presented in Figure 4 can be applied only to
a 2DoF robot and on a 2 dimensional error-space. It can be
extended to robots of higher DoF and error-space of higher
dimensionality by treating the robotic system as a collection
of 2DOF sub-systems, each associated with a tuning module
and reflex motion generator module. Equations (4) and (5)
are applied for each sub-system using the projection of the
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error position in a 2D subspace of the error-space. A single
DoF can be controlled by several sub-systems. An example
of such a system is provided in Figure 5, in which three DoF
are controlled by two sub-systems which co-adapt. Such a
controller is used in the following experimental section.

IV. EXPERIMENTAL RESULTS

A. Purpose and setup

In this section we validate that the proposed controller can
adapt itself to:

• changes in the configuration of the system controlled
• execution of different tasks
The field of application of the proposed controller is ex-

pected broad and applicable to a wide range of error spaces.
But for direct evaluation, we test here the proposed approach
using a simulated 3 DoF open-links robotics arms executing
diverses tasks. Adaptability of the controller is tested as it is
implemented in robots of different configurations. Periodic
integration presented in the previous section is the only
system used by the controller to adapt itself to the kinematic
parameters of the robot as well as to the task being executed.

The simulation was created using Open Dynamic Engine
[15] and the robotic arms moved in the 2D sagital plane
subjected to gravity. The base of the robot is fixed on a
ceiling and the starting position of the robots is θ1 = 0,
θ2 = 0 and θ3 = 0, which corresponds to straight joints
pointing downward. The sole inputs to the controller are the
configuration of the robot (i.e. the joint angles θ1, θ2 and θ3),
the position of the end-effector in the cardinal space and λ,
the angle between the last link and the vector defined by the
end-effector and the target. No parameters are considered
known, including that the system is an open-link system.

B. Results

1) Task 1: The first task consists in reaching the target
following a straight line. The considered cartesian error-
space is centered on the target and its basis is given by
[e0, e1]; e0 is the vector defined by the target and the
initial end-effector position; and e1 is a π/2 rotation of
e0. The error vector position is the position e = [ex, ey]
of the end-effector in the error-space. The task-specification
function is given by D(e) = [−ex,

−ey
2 ]; which consists in

TABLE I
PARAMETERS OF THE CONTROLLER

PARAMETER VALUE
kp (physical system) 10
kd (physical system) 10

kp (virtual dynamic system) 1
kd (virtual dynamic system) 0.1

TABLE II
PARAMETERS OF THE 2DOF ROBOT

PARAMETER VALUE
joint 1 l=0.5[m], m=0.5[kg]
joint 2 l=0.4[m], m=0.4[kg]

TABLE III
PARAMETERS OF THE 3DOF ROBOT

PARAMETER VALUE
joint 1 l=0.4[m], m=0.4[kg]
joint 2 l=0.3[m], m=0.3[kg]
joint 2 l=0.2[m], m=0.2[kg]

TABLE IV
PARAMETERS OF THE ALTERNATIVE 3DOF ROBOT

PARAMETER VALUE
joint 1 l=0.3[m], m=0.3[kg]
joint 2 l=0.3[m], m=0.3[kg]
joint 2 l=0.3[m], m=0.3[kg]

reaching the target following the y abscisse of the error-
space; i.e. the line defined by the target and the original
position of the end-effector. We call this line the reaching
line. Parameters are given in Table I. The task was executed
on the 2DoF robot which joint characteristics are given in
Table II. Results are given in Figure 6-a. On the right, the
error components vs time is presented. On the left, the initial
and final configurations of the robot are shown in dark grey.
Lighter gray figures show intermediate configurations. The
end-effector successfully moves toward the target following
a straight line.

2) Task 2: The second task consists in aligning the end-
effector on the target, while keeping the end-effector on
the reaching line. The error-position vector is given by
[ey, λ]. The task-specification function is given by D(e) =
[−ex,−λ]. The same 2 DoF robot as above was used and
results are given in Figure 6-b. Note that the controller is
completely identical to the one used for executing the first
task, as only the error-space and the task definition have
been changed. The end-effector successfully aligns toward
the target while remaining close to the reaching line.

3) Task 3: The third task consists in the simultaneous
exection of task 1 and 2, i.e. reaching the target following a
straight line while aligning the last joint with the target. This
task was executed by associating two sub-systems as shown
on Figure 5. The resulting controller was tested using two
different 3 DoF robots which joint characteristics are given
in Table III and Table IV. Results shown in Figure 6-c and
d show that the task is successfully performed.

V. DISCUSSION AND FUTURE WORK

The proposed controller showed adaptability as sole
change in the inputs could have it accomplish two different
simple tasks with success. Periodic integration resulted in
the controller adapting itself to the configuration of the
robot. The controllers did not include any prior knowledge
of the task-space in which the errors were expressed; or any
analytical model of the system in which they are embedded.

A limitation of this approach is that it is not suitable for
control of underactuated systems where estimation of future
reward is necessary. For such system, reinforcement learning
might be preferable. In general, a theoretical analysis of
the proposed approach is required to clearly define the
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Fig. 6. Experimental results of control of simulated open-linked robotic arms performing different tasks

characteristics of the error-space necessary for application
of the method. The stability analysis work of tacit-learning
controllers, which started in [14], is also under progress.

This approach is applicable to abstract error spaces. While
errors in a cartesian physical space is common in robotics,
more abstract error space such as the one defined by markers
used for characterizing the status of post-stroke patients
can be considered. The other advantage of the proposed
controller is its ability to continuously adapt to enviromental
changes, e.g. recovery status of a post-stroke patient. Thus,
we believe the proposed approach to be suitable for the
adaptive control of robotic systems targeting efficient post-
stroke rehabilitation. The embedded feature of continous
adaptation is required as the patient capabilities change along
its recovery status. Future work will focus on this application.

VI. CONCLUSION

We generalized the structure of the principle of tacit
learning such as extending its applicability to a wide range
of systems and error spaces. This was achieved by applying
integration in a hierarchical fashion, in which the value of
a virtual periodic dynamic variable is tuned for continuous
adaptation. As learning is embedded in the controller, this
later does not require any prior knowledge of the error-space
in which the errors are expressed; or any analytical model of
the system in which it is embedded. The advantage is that
control and adaptation progress without explicit distinction
between them. This approach is particular suitable for ap-
plication in which features of the controlled system evolve
with time.
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