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Abstract—In this paper, statics model of an underactuated 

wire-driven flexible robotic arm is introduced. The robotic arm 

is composed of a serpentine backbone and a set of controlling 

wires. It has decoupled bending rigidity and axial rigidity, 

which enables the robot large axial payload capacity. Statics 

model of the robotic arm is developed using the Newton-Euler 

method. Combined with the kinematics model, the robotic arm 

deformation as well as the wire motion needed to control the 

robotic arm can be obtained. The model is validated by 

experiments. Results show that, the proposed model can well 

predict the robotic arm bending curve. Also, the bending curve 

is not affected by the wire pre-tension. This enables the 

wire-driven robotic arm with potential applications in 

minimally invasive surgical operations.  

I. INTRODUCTION 

nderactuated flexible manipulators (UFM) are of 

growing interests in recent years, especially in the field 

of robotic surgery [2-5], industrial inspection [6], 

underwater propulsion [7-9], etc. In these applications, the 

manipulator needs be flexible, compact in structure. UFMs 

usually have limited payload ability and limited positioning 

accuracy. As the number of actuators is much less than the 

robot DOFs the robot motion or deformation is related to the 

forces exerted on it. For inspection tasks, the positioning 

accuracy and payload capacity of the UFM is not crucial. 

However, for manipulation tasks, e.g. performing a surgery 

operation, precision positioning is important. Also, the 

payload capacity of the robotic arm is crucial as there are a lot 

of operations, e.g. cutting tissues, suturing, etc. How the 

forces, including the controlling forces and external loads 

influence the robotic arm deformation is therefore crucial. 

In previous work, researchers mainly focus on the design 

and kinematics of UFM. Some common design approaches 

include, tendon/wire/cable driven [10] and concentric tube 

design [3, 4]. Among the few articles discussing UFM statics, 
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most of them deal with continuum robotic arms [11-15]. The 

UFM is modeled as a continuous beam, and the statics is 

based on Bernoulli-Euler Constitutive Law [12-14] or 

Crossrat Rod Theory [11, 15]. These models well predict the 

UFM backbone deformation under external loadings, and 

validations are given with simple loading conditions. For 

underactuated serpentine robotic arms, the structure is 

different, hence, above models are not applicable. Also, 

traditional statics models for fully actuated serpentine robotic 

arms are not suited to the underactuated ones.  

This paper gives the statics model of a wire-driven 

underactuated serpentine robotic arm, whose design was 

presented in our previous work [10]. Compared to continuum 

robotic arms, this type of robotic arm has decoupled axial 

rigidity and bending rigidity. The statics model of the 

wire-driven robotic arm is derived from Newton-Euler 

method. From the model, one can predict the deformed 

backbone curve when all the forces are known; or calculate 

the wire tension needed to manipulate the robotic arm distal 

tip to a desired position with known external loadings. Wire 

motion can be calculated from the kinematics model.  

The rest of the paper is organized as follows: section II 

presents the underactuated wire-driven flexible robotic arm; 

section III reviews the kinematics model; section IV shows 

the statics modeling; section V gives the experimental 

validation; finally, section VI concludes the paper. 

II. WIRE-DRIVEN FLEXIBLE ROBOTIC ARM 

The wire-driven flexible robotic arm comprises a number 

of vertebras, a couple of wire pairs and several elastic 

components [10, 16]. The vertebras are serially linked, with 

adjacent vertebras form a joint, either revolute joint or 

spherical joint. When all the joints are revolute joint, the 

robotic arm motion is planar bending. It can bend side to side 

in a plane. Otherwise, if all the joints are spherical joint, the 

robotic arm motion is spatial. It can bend to all directions. The 

joint motion is confined by the elastic component, such as an 

elastic tube. Vertebras together with the elastic components 

make up the flexible backbone of the robotic arm. The wire 

pairs go through all the vertebras and are fastened to the 

backbone distal end. The other end of the wires is connected 

to the actuators. 

Figure 1 shows a planar wire-driven flexible robotic arm. It 

has a base, ten vertebras, a uniform elastic tube, and a pair of 

controlling wires. The vertebra length is H and the joint gap 

distance is h0. At resting position, the robotic arm is straight 

as in Fig. 1 (a). By pulling one wire and releasing the other, 

the robotic arm bends as in Fig. 1 (b). The robotic arm 
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bending motion can be controlled by one or two actuators. In 

this design, each joint can bend up to 14.27°, and the bending 

limit of the robotic arm backbone is 142.7° [10].  

 
Fig. 1 Planar Wire-Driven Flexible Robotic arm 

As shown in the figure, the backbone has two parts. One is 

the rigid vertebras and the other is the elastic tube. The elastic 

tube serves as the torsion spring on each joint. It constrains 

the joints rotations. The tube cross section area is uniform. As 

a result, the constraint on each joint is the same. On the other 

hand, the elastic tube deformation is also confined by the 

vertebras rotations. The tube has two parts, one is attached to 

the vertebras and the other is in the joints. During the bending, 

only the second part deforms. When the robotic arm bends, 

the tube axis is coincident with the robotic arm neutral axis, 

i.e. the tube length is constant, or the tube deformation is pure 

bending. With this design, the robotic arm has high axial 

rigidity and can bend largely.  

III. KINEMATICS OF THE ROBOTIC ARM 

In wire-driven robotic arm manipulation, the wires control 

the backbone deformation, or the joints rotations. From the 

backbone deformation, the distal end position and orientation 

can then be obtained. Without considering the external load, 

the deformed backbone shape is assumed a circular arc 

(constant curvature assumption) [10]. However, different 

from traditional discrete rigid robotic arm, the wire-driven 

flexible robotic arm’s configuration is affected by the 

external loads a lot. The constant curvature assumption does 

not stand when there is an external load. For the wire-driven 

robotic arm, the kinematics and statics are coupled as in Fig. 

2. 

The kinematics model of the underactuated wire-driven 

robotic arm was presented in our previous work, details are in 

[10, 16, 17]. The kinematics is composed of four parts (f1, f1
-1

, 

f2, f2
-1

) as shown in Fig. 2. In the model, external load was not 

considered. Considering the external loads, the joints 

rotations are not identical anymore, the previous kinematic 

model needs be modified.  

 
Fig. 2 Coupled Kinematics and Statics 

When there is an external load, the backbone deforms 

differently. The distal end position is only determined by the 

backbone deformation. Equation (1) shows the relationship. 

In the equation, θi is the rotation of joint i.  
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The wire length change is determined by the backbone 

deformation as well as the wire tension. From Fig. 2,the wire 

length change induced by the tension is: =j j jL L   ,

j j E  , where E is the Young’s Modulus of the wire, j is 

the strain, j  is the stress,  and j=1,2 is the index of the wires. 

However, the length change induced by the wire tension is 

negligible. In this robotic arm, steel wire with 0.5 mm 

diameter is used. When the pulling force is 10 N, the strain of 

the wire is 0.024%. Comparing to the length change induced 

by the wire motion (a few percent), this is negligible. Hence, 

for some general situation, the wire length can be calculated 

as per Equation (2). In the equation, L0 is the initial wire 

length, and d is the wire spacing distance.  
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 (2) 

For the wire-driven robotic arm, the backbone deformation 

or joints rotations are strongly affected by the external loads. 

Thus, statics modeling is crucial.  

IV. STATICS OF THE ROBOTIC ARM 

The planar wire-driven flexible robotic arm is an N-link 

manipulator with constraints on each joint. In the above 

design, the link number is ten and a uniform constraint is 

applied via the elastic tube. Wires are soft and massless. They 

are ignored in the static analysis.  

The forces acted on the robotic arm are divided into two 

categories. One is the external loads, and the other is the 

controlling forces from the wires. The loads applied to the 

backbone can be various, such as distributed force, lumped 

force, and moment. In calculating the backbone distal end 

deflection, from the theorem of reciprocal displacements 

[18], any arbitrary external load is equivalent to a lumped 

force and a pure moment at the backbone distal end. Hence, in 

the analysis, only one loading condition is considered, i.e., a 
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lumped force Fex, a lumped force Fey, and a pure moment Me 

are applied to the distal end of the backbone. The backbone 

bending is actively controlled by the wires. The two wires are 

equally pretensioned, and the tension is Tp. At the resting 

position, the resultant controlling force acted on the backbone 

is an axial force without bending moment. When the two 

wires change lengths, the tensions in the wires are diferent 

[10]. Also, when external loads are applied, the tensions in the 

wires changes. The resultant controlling forces applied to the 

backbone are a concentrated force T=T1+T2 and a bending 

moment M. 

 
Fig. 3 Static Analysis of Wire-Driven Flexible Robotic arm 

In the analysis, the robotic arm is modeled as in Fig. 3 (a). 

Each vertebra is modeled as a link, and the elastic tube is 

modeled as a number of spiral springs, the spring constants of 

all the springs are identical. The coordinate frame is set at the 

first joint rotation center. The X axis is along the resting 

position. In the figure, Fex, Fey and Me are the external 

loadings, T1 and T2 are the wire tensions. When the wires are 

tensioned, they apply a lateral force Ti' to the vertebras, as 

shown in Fig. 3 (b). The lateral froce is related to the joint 

rotation and wire tension. The free body diagrams (FBD) of 

the vertebras are shown in Fig. 3 (d). In the figure, Fbx, Fby and 

Mb are the forces and moment from the robot base; Fix, Fiy, Mi 

and Fix', Fiy', Mi' are the forces, moments and their 

corresponding reactions among the joints. The angles are 

defined as in Fig. 3 (c). In the figure, Ji denotes the joint i, Li 

=H+h0 is the length of link i, θi is the joint rotation, αi is the 

link orientation in world coordinate frame, βi is the angle 

between Ti' and Y aixs.  

The actuation moment applied via the wires is: 

  1 2M T d T T d       (3) 

where, d is the wire spacing distance as in Fig. 1. 

Assume the Young’s modulus of the elastic tube is E, and 

the second axial moment of area is Iz. For each joint, the 

rotation is small. Therefore, the torque applied to the joints by 

the tube is as per Equation (3). At the first joint, the torque is 

1 0b zM EI h  . 

  1 0i z i iM EI h     , i = 2, 3, ..., N (4) 

From the free body diagram, the force balance equations 

can be found. For the first vertebra, i.e. i=1 to N-1:  
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When i=1, 
1 bT T  .For the last vertebra, i.e. i=N: 

 

   

   

     

cos sin

sin cos

sin 0.5 cos

nx n ex n n

ny n ey n n n

n e n ex n ey n n

F T F T

F T F G T

M M M L F F G

 

 

 

   

    


       

 (6) 

where, 1 1  , 1i i i     , 1 1 2  ,  1 2i i i     , and 

 sin 2i iT T   . 

From the statics model, when all the external loadings and 

controlling forces are given, the joints rotations can be 

obtained.  In practice, one may be more concerned about how 

to manipulate the backbone distal end to a desired position 

under given loading conditions. In other words, when the 

distal end position and external loads are given, what the 

controlling forces, joints rotations and the wire motions are. 

Assume the pre-tension of the wires are both Tp, and the 

robotic arm is pulled by wire-1. From Equation (3) we have: 
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From Equation(1), and Equation (3) to Equation(7), there 

are 4N+ 2 unknowns (T1, T2, Mi, Fix, Fiy, i ) and 4N+4 

independent equations. The controlling forces can be solved. 

It is noted that, since the backbone deformation is no affected 

by axial force, in the solution T2 is set to Tp. The initial value 

of the joint rotation can be chosen using the constant 

curvature assumption. Note that, when all the joints rotations 

are identical, Eq. (1) can be rewritten as Eq. (8), thus the 

initial values of link orientation can be chosen as in Eq. (9). 
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V. EXPERIMENT VALIDATION AND DISCUSSION 

To examine the proposed statics model, a wire-driven 

flexible robotic arm is developed. It has ten vertebras, 
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including the base. The length of each vertebra is 12.5 mm, 

and the joint gap distance is 2.5 mm. The joints can rotate up 

to 14.25°. The vertebras are made by 3D printing, and the 

mateial is ABS plastic. Each vertebra weight 2.83g. Detailed 

vertebra information can be found in [10]. An elastic rubber 

tube is used to confine the joints rotations. The outer diameter 

is 2.1 mm, and the inner diameter is 2.0 mm. The Young’s 

Modulus of the tube is 1.5 GPa. A pair of 0.5 mm diameter 

steel wires are used to control the backbone bending. The 

experiment set up is shown in Fig. 4.  

In the experiment, the robotic arm is horizontally 

suspended by the base. Two wires are guided by the pullys to 

control the robotic arm bending. External load is applied via a 

mass hung at the distal tip. The backbone curve is measured 

using stereo vision, and the grid paper is used for calibration. 

Three experiments are carried out.  In the first experiment, the 

robotic arm is controlled without payload; in the second 

experiment, a vertical payload is applied at the distal end; at 

last, the influence of wire pre-tension is tested. 

 

Fig. 4 Experiment Setup 

A. Experiment 1 - without external load  

In this experiment, the robotic arm is controlled without 

external loads, i.e. Fex=0, Fey=0, Me=0. The robotic arm is 

bended by its own weight and the wires. In the beginning, the 

pulling forces of the two wires are T1=T2=2 N. After that, the 

tension of the upper wire is increased and the tension of the 

second wire remains constant. Four cases are tested, i.e. 1) 

T1=2 N, T2=2 N; 2) T1=6 N, T2=2 N; 3) T1=7 N, T2=2 N; 4) 

T1=8 N, T2=2 N.  

The deformations of the backbone are as in Fig. 5. In the 

figure, the solid curves represent the simulated backbone 

curve, and the circles are the simulated joint position; the 

dashed curves denote the measured backbone curves, and the 

squares are the measured joint position. The results of the four 

cases are shown by different colors, where red represents for 

case 1, green represents for case 2; blue represents for case 3; 

and magenta represents for case 4. 

Fig. 6 shows the simulated joint rotations in the four cases. 

From the figure, when the pulling forces of the two wires are 

the same (T1=2N), the backbone deformation is mainly 

determined by the joints near the base, the last two joints 

rotations are almost zero. When the pulling force is large as in 

the cases T1=7 N (blue) and T1=8 N (purple), the distal joints 

first reach the maximum rotation (overlapped in the figure). 

This shows when considering the statics, the constant 

curvature assumption does not stand any more. Considering 

equation (2), the length change of the two wires are 

∆L1=-2.66 mm and ∆L2=2.62 mm respectively. When the 

pulling force T1 is increased, the robotic arm is bended 

upward. The wires length changes in the four cases are: 2) 

∆L1=3.24 mm, ∆L2=-3.35 mm; 3) ∆L1=10.72 mm, 

∆L2=-11.19 mm; 4) ∆L1=14.57 mm, ∆L2-15.32 mm. From the 

results, the statics model can well predict the robotic arm 

bending in all the cases. Also from the experiments, the wire 

length changes in all the cases are predicted reasonably well.  

 

Fig. 5 Backbone Deformation without External Load 

 

Fig. 6 Simulated Joint Rotation without External Load 

B. Experiment 2 – with vertical payload 

In this experiment, the robotic arm is controlled to lift a 

weight vertically. The loading condition is Fex=0, Fey=1 N, 

Me=0. The pre-tensions of the wires are the same as in the 

previous experiment. Three cases are tested, i.e. 1) T1=10 N, 

T2=2 N; 2) T1=11 N, T2=2 N; 3) T1=12 N, T2=2 N. 

The deformations of the backbone is as in Fig. 7. Similarly, 

the solid curves are the simulated backbone deformation, and 

the dashed curves are the measured backbone deformation. 

The results of the three cases are shown by red, green and blue 

respectively. When there is a vertical payload, the backbone 

deformation is much different. The deformed backbone curve 

is S shape, while in the previous experiment, the deformed 

backbone curves are in C shape. The joints rotations are as 

shown in Fig. 8. From the figure, when T1=12 N, the first joint 

reaches its rotation limit, so do the last four joints. This shows 
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the adjacent vertebras contact each other. When the pulling 

force is further increased, the two vertebras are ‘locked 

together’. The number of rotating vertebras is then reduced, 

and the robot bending rigidity is increased. 

 

Fig. 7 Backbone Deformation with 1 N Vertical Payload 

 

Fig. 8 Simulated Joint Rotation without 1 N Vertical Load 

C. Experiment 3 – influence of the wire pre-tension 

From the statics model, when the two wires are equally 

pre-tensioned, the backbone deformation is independent to 

the magnitude of the pre-tension. This experiment is designed 

to test this feature. In the experiment, the robotic arm external 

loading condition is the same as that of experiment 1, i.e. 

Fex=0, Fey=0, Me=0. The two wires are equally pretensioned. 

Five cases are tested: 1) T1=T2=0 N; 2) T1=T2=1 N; 3) 

T1=T2=2 N; 4) T1=T2=3 N; 5) T1=T2=4 N. The measured 

backbone deformation is shown in Fig. 9.  

From the results, the backbone deformations are consistent 

with some variations. The variation is caused by several 

factors, including the friction between the joints, fiction 

between the wire and vertebras, the measurement error, etc. 

The results show that, the backbone bending is not affected by 

the magnitude of the wire pre-tension.  

 

Fig. 9 Backbone Deformation with Different Wire Pre-tension 

D. Discussion 

In the experiment, the robotic arm backbone deformation 

under some simple load conditions is tested. The results 

validate the proposed model. Due to the limitation of the test 

bed, some other more complicated loading conditions are not 

tested. Instead, simulations are performed. Fig. 10 shows the 

robots deformation under five loading conditions. 

 
Fig. 10 Simulated Backbone Curve at Different Loading Conditions 

case 1: T1=8 N; T2=2 N; Fex=0.5 N; Fey=0 N; Me=0 Nm 

case 2: T1=8 N; T2=2 N; Fex=0 N; Fey=0.5 N; Me=0 Nm 

case 3: T1=8 N; T2=2 N; Fex=0 N; Fey=0 N; Me=0.05 Nm 

case 4: T1=8 N; T2=2 N; Fex=0.5 N; Fey=-0.5 N; Me=0 Nm 

case 5: T1=8 N; T2=2 N; Fex=0.5  N; Fey=-0.5 N; Me=-0.05 

Nm 

From the results, the backbone bending curve is smooth. 

The force in +Y direction and a positive bending moment 

tends to bend the backbone as in case 2) and 3). The backbone 

bending is very sensitive to the vertical force and bending 

moment. From case 1) and case 4) when there is an additional 

vertical force, the backbone deformation is very different: the 

robotic arm is straightened a lot. From case 4) and case 5), 

with a negative bending moment, the robotic arm is further 

straightened from case 2). All of these show that the 

wire-driven flexible robotic arm is sensitive to the loads other 

than axial direction.   

From experiment 3, the wire-driven flexible robotic arm 

deformation is independent on the magnitude of the wire 
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pre-tension. This shows the decoupled rigidity of the 

wire-driven flexible robotic arm. The robot can bear large 

payload in axial direction. This is especially useful for some 

applications, such as cutting tissues with scissors. The cutting 

forces are symmetric, and can be transferred to the axial 

direction. As a result, the wire-driven flexible robotic arm can 

be used in cutting hard tissues. For current flexible robots, e.g. 

concentric tube robots or tendon-driven robots, the rigidity in 

bending direction and axial direction are both low. This limits 

the payload capability of the robots, and constrains their 

applications. 

From the experiments, it is observed that the influence of 

the friction cannot be ignored. Although, lubricant grease is 

used, at some configurations, the robotic arm is not sensitive 

to the actuation force. This shows the static friction needs be 

included in the statics model. Also, the contacting of two 

vertebras need be considered in the statics model. These will 

be considered in the future work. 

VI. CONCLUSION 

This paper presents an underactuated wire-driven flexible 

robotic arm and its statics model. The robotic arm has a large 

number of joints, whose motion is controlled by a pair of 

wires. It is flexible, and highly underactuated. The robotic 

arm deformation is not only dependent on the actuation, but 

also the external loads. The kinematics and statics are coupled 

together. The axial rigidity and bending rigidity of the robotic 

arm are decoupled. This improves the payload capability in 

axial direction. It is modeled as an N-link manipulator with a 

spiral spring on each joint. From the model, when all the 

external loadings and controlling forces are known, the 

robotic arm deformation can be calculated. Also, the required 

wire motion and controlling forces to manipulate the robotic 

arm distal end to a desired position with given external 

loading conditions can be predicted. The model is validated 

by experiments. Incorporating instrument tracking and 

navigation capabilities [19-22], the proposed flexible robotic 

system are expected to be applied to robotic surgeries. 
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