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Abstract— In this paper, we investigated the dynamic char-
acteristics in the gait of a quadruped robot, which is controlled
by an oscillator network constructed based on the physiological
concept of central pattern generators and the physiological evi-
dence of phase resetting. From the observation in humans, two-
parameter cusp catastrophe is suggested to be embedded in the
walk–run transition with the locomotion speed and additional
load as control parameters. In our previous work, simulation
studies revealed that a quadruped robot model produces the
walking and trotting gaits depending on the locomotion speed
and it shows the cusp bifurcation due to additional weights
similar to humans through dynamic interactions among the
robot’s mechanical system, the oscillator network system, and
the environment. The aim of the present study is to verify
such dynamic characteristics in the cusp catastrophe of the gait
transition in the locomotion of our quadruped robot model in
the real world by using a quadruped robot.

I. INTRODUCTION

Locomotion in humans and animals is a self-organizing
phenomenon that emerges through dynamic interactions
among the nervous system, the musculoskeletal system, and
the environment and has various nonlinear properties. In
particular, there are various gaits in their locomotion, such
as walking and running gaits for humans and walking,
trotting, and galloping gaits for quadruped animals, and
hysteresis appears when the gaits change in accordance with
the locomotion speed [2], [7], [11], [13], [17], [21], [29],
[33], [38]. That is, the gaits vary at different locomotion
speeds depending on the speed change direction. Although
hysteresis is a typical characteristic of nonlinear dynamic
systems, the hysteresis mechanism in the gait transition
remains largely unclear.

In our previous works [1], [2], we focused on the
walk–trot transition in quadruped animals and developed
a neuromechanical model and a quadruped robot based
on the physiological concept of central pattern generators
(CPGs) [12], [28], [34] and the physiological evidence of
phase resetting [6], [8], [30], [31] to elucidate the hysteresis
mechanism in the gait transitions from a dynamic viewpoint.
The results showed that our models produced the walking
and trotting gaits depending on the locomotion speed. In
addition, they exhibited the gait transition with hysteresis
when the locomotion speed was changed. This was not
because we intentionally designed the movements of our
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Fig. 1. Cusp catastrophe in gait transitions (modified from [5]). Relative
phase determines the gait and shows the folding property for the locomotion
speed. The size of the folding reduces as the load increases and the folding
disappears at a critical load.

models to produce the gait transition and hysteresis; rather,
because the stability structure of the gaits changes through
the interaction between the nervous control system, the body
mechanical system, and the environment. Furthermore, the
biological relevance of the gait generation and transition of
our models were evaluated by measuring the locomotion in
dogs. We conducted a stability analysis using return maps
and concluded that the hysteresis in the walk–trot transition
of our quadruped models was produced through saddle-node
bifurcation.

In addition to the appearance of the hysteresis in the gait
transition, Beuter and Lalonde [5] showed that the hysteresis
loop regarding the locomotion speed in the walk–run transi-
tion of humans reduces as the additional weight put on the
subjects increases. That is, the additional load decreases the
difference between the walk-to-run and run-to-walk transi-
tion speeds. They explained that this result suggests that a
two-parameter cusp catastrophe with the locomotion speed
and load as control parameters is embedded in the walk–
run transition in humans, as shown in Fig. 1. Specifically,
the relative phase (between the leg segments for humans [7]
and between the leg motions for quadruped animals [2])
determines the gait and shows the folding property for the
locomotion speed due to the hysteresis property. In addition,
the size of the folding reduces as the additional load increases
and the folding disappears at a critical load.

While the walk–run transition of humans suggests the
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Fig. 2. Quadruped robot (A: robot and B: schematic model) developed
in our previous work [2]. The robot body consists of two sections that are
mechanically attached to each other.

existence of cusp bifurcation, it remains unclear if the gait
transition of quadruped animals has the cusp catastrophe
structure. Therefore, in our previous work [3], we conducted
computer simulations using a quadruped robot model and
demonstrated that the cusp catastrophe is embedded in the
walk–trot transition of the robot model, similarly to the
walk–run transition in humans. However, because the sim-
ulation study was based on a mathematically ideal model
of a robot, discrepancies between simulation results and
experimental results are inevitable. In addition, the cusp
bifurcation is a characteristic property of nonlinear dynamic
systems. It is important to verify our simulation results using
an actual robot. The aim of the present study is to verify the
obtained dynamic characteristics in the walk–trot transition
in the real world using a quadruped robot and additional
weights.

This paper is organized as follows: Section II introduces
our developed quadruped robot and Section III explains the
locomotion control system. Section IV shows the experi-
mental results and Section V presents the discussion and
conclusion.

II. QUADRUPED ROBOT

We used a quadruped robot (Fig. 2), which was developed
in our previous work [2]. It consists of a body and four
legs (Legs 1–4). (The body consists of two sections that are
mechanically attached to each other.) Each leg is attached to
the body through a pitch joint (Joint 1) and consists of two
rigid links connected by a pitch joint (Joint 2). Each joint
is manipulated by a motor with encoder. A touch sensor is
attached to the tip of each leg. Table I shows the physical
parameters of the robot.

The robot walks on a flat floor. Electric power is exter-
nally supplied and the robot is controlled by an external
host computer (Intel Pentium 4 2.8 GHz, RT-Linux), which
calculates the desired joint motions and solves the oscillator
phase dynamics in the locomotion control system. The robot
receives the command signals at intervals of 1 ms. The robot
is connected to the electric power unit and the host computer
by cables that are slack and suspended during the experiment
so that they do not affect the locomotor behavior.

TABLE I

PHYSICAL PARAMETERS OF THE QUADRUPED ROBOT

Link Parameter Value
Body Mass [kg] 1.50

Length [cm] 28
Width [cm] 20

Upper leg Mass [kg] 0.27
Length [cm] 11.5

Lower leg Mass [kg] 0.06
Length [cm] 11.5
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Fig. 3. Locomotion control system composed of an oscillator network
using four leg oscillators (Leg 1–4 oscillators). Solid blue arrows indicate
interactions between the oscillators based on the phase relationship Δij .
The oscillator phases are modulated by touch sensor signals (dotted green
arrows). The oscillator phases determine the leg joint kinematics (dashed
black arrows).

III. LOCOMOTION CONTROL SYSTEM

The physiological concept of CPGs [12], [28], [34] and
the physiological evidence of phase resetting [6], [8], [30],
[31] have been often used to develop locomotion control
systems for legged robots [10], [18–20], [23], [35], [37]. In
this paper, we used the locomotion control system developed
in our previous work based on the CPGs and phase resetting
(Fig. 3) [2]. This consists of a simple oscillator network using
four phase oscillators (Leg 1–4 oscillators), which produce
the motor torques based on the phase information of the
oscillators to create the movements of the corresponding leg
and regulate the rhythm and phase information based on the
touch sensor signals. We briefly explain this control system
below (see details in [2]).

We define the phase of Leg i oscillator as φi (i = 1, . . . , 4,
0 ≤ φi < 2π) and design the movement of Leg i by the phase
φi. The leg motion is composed of the swing and stance
phases (Fig. 4). The swing phase consists of a simple closed
curve for the tip of the leg that includes the anterior extreme
position (AEP) and the posterior extreme position (PEP). It
starts from the PEP and continues until the leg contacts the
ground. The line segment between the AEP and the PEP is
parallel to the body. The stance phase consists of a straight
line that starts from the landing position (LP) and ends at the
PEP. We set φi = 0 at the PEP and φi = φAEP(= 2π(1−β))
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Fig. 4. Leg joint kinematics composed of the swing and stance phases.
The swing phase for the tip of the leg is a closed curve that includes the
anterior extreme position (AEP) and the posterior extreme position (PEP).
The stance phase is a straight line from the landing position (LP) to the
PEP. When the leg lands on the ground, it changes from the swing to the
stance phase. When the tip of the leg reaches the PEP, it moves into the
swing phase.

at the AEP, where β is the duty factor. The desired leg joints
are obtained from the inverse kinematics and we controlled
the robot joints to follow the designed movements using a
PD feedback controller.

We used D for the distance between the AEP and the
PEP. We used Tsw and Tst for the swing and stance phase
durations, respectively, for the case when the leg contacts
the ground at the AEP (LP = AEP). The duty factor β, the
stride length S, and the locomotion speed v are respectively
given by

β =
Tst

Tsw + Tst

S =
D

β

v =
(1 − β)D

βTsw
(1)

In this paper, we used D = 10 mm and Tsw = 145 ms and
varied the locomotion speed v by changing the duty factor
β through the stance phase duation Tst. We used the same
values of these parameters for all the legs.

Since the leg movement is determined by the correspond-
ing oscillator phase, the gait is determined by the relative
phase between the oscillators. We define the relative phase
by

Δij = φi − φj , i, j = 1, . . . , 4 (2)

where 0 ≤ Δij < 2π. Because the relationships Δij =
−Δji, Δij = Δik + Δkj , and Δii = 0 (i, j, k = 1, . . . , 4)
are satisfied, the gait is determined by three state variables,
such as [ Δ21 Δ31 Δ43 ]. For example, [ Δ21 Δ31 Δ43 ] =
[ π π/2 π ] is satisfied for the walk and [ Δ21 Δ31 Δ43 ] =
[ π π π ] is satisfied for the trot.

We used the phase dynamics for the oscillators, which is
given by

φ̇i = ω + g1i + g2i, i = 1, . . . , 4 (3)

where ω = 2π(1 − β)/Tsw and functions g1i and g2i

(i = 1, . . . , 4) are the interaction between the oscillators

and the sensory regulation by phase resetting based on touch
sensor signals, respectively. The function g1i manipulates the
relative phases of the oscillators by

g1i = −
4∑

j=1

Kij sin(Δij − Δ∗
ij), i = 1, . . . , 4 (4)

where Δ∗
ij (i, j = 1, . . . , 4) is the desired relative phase and

Kij (i, j = 1, . . . , 4) is the gain constant (Kij ≥ 0). We used

Δ∗
21 = Δ∗

43 = π (5)

and a large value for the gain constants K12, K21, K34, and
K43 (K12 = K21 = K34 = K43 = 20) so that the right
and left legs move in antiphase. We also used the desired
value for the relative phase Δ31 to produce the antiphase
movement between the ipsilateral legs. That is,

Δ∗
31 = π (Δ∗

42 = π) (6)

For this interaction, we used the gain constants K13, K31,
K24, and K42 and set the other Kij to zero. However, we
used as small values as possible for the gain constants K13,
K31, K24, and K42 (K13 = K31 = K24 = K42 = 0.5) to
minimize this influence and to allow the robot to change its
gait from the desired gait through locomotion dynamics due
to sensory regulation by phase resetting. The function g2i

regulates the locomotor rhythm and phase by touch sensor
signals based on the phase resetting mechanism [1–3], [25–
27], [40] and is given by

g2i = (φAEP − φi)δ(t − tiland), i = 1, . . . , 4 (7)

where tiland is the time when Leg i contacts the ground (i =
1, . . . , 4) and δ(·) denotes the Dirac delta function.

Under the constraints (Δ21 = Δ43 = π) as assumed in (5)
using a large value for the gain constants K12, K21, K34,
and K43, the gait of our robot is determined by the dynamics
of the relative phase Δ31, which is given from (3), (4), and
(7) by

Δ̇31 = −(K31 + K13) sin(Δ31 − Δ∗
31)

−(φAEP − φ1)δ(t − t1land)
−(φAEP − φ3)δ(t − t3land) (8)

Because we used the desired value for the relative phase Δ31

in (6), the trotting gait (Δ31 = π) is the only attractor when
we do not use phase resetting (7). However, since we used
a small value for the gain constants K13 and K31 and phase
resetting modulates the relative phase Δ31 by the function
g2i in (7), the relative phase Δ31 is allowed to move from the
desired value Δ∗

31. Therefore, the gait is generated through
the interactions among the robot’s mechanical dynamics, the
oscillator dynamics, and the environment, which depends on
the physical conditions, such as the locomotion speed and
additional weight.
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Fig. 5. Gait transition of the quadruped robot without putting additional
loads induced by changing the locomotion speed through the duty factor
β (three trials for each increase and decrease of the locomotion speed).
Relative phase Δ31 changed between 1.4 and 2.6 rad, which shows that the
gait changed between the walking and trotting gait. The trotting gait changed
to the walking gait around β = 0.66 and the walking gait transitioned to the
trotting gait around β = 0.61. The walk-to-trot and trot-to-walk transition
speeds differed and hysteresis appeared.

IV. RESULTS

We first examined how the gait of our quadruped robot
changes by slowly changing the locomotion speed through
the duty factor β without putting additional loads on our
quadruped robot, where we alternated accelerating and de-
celerating trials three times. Figure 5 shows the results of
the relative phase Δ31 plotted at the foot contact of Leg 1.
Around β = 0.55, the relative phase Δ31 is 2.6 rad and the
robot established the trotting gait (although 2.6 rad is slightly
different from π, we considered this to be the trotting gait to
distinguish it from the walking gait described below). On the
other hand, around β = 0.7, the relative phase Δ31 is 1.4 rad
and the robot achieved the walking gait. This means that the
robot produced different gaits depending on the locomotion
speed. In addition, when we decreased the locomotion speed
by increasing the duty factor β from 0.55 to 0.7, the relative
phase Δ31 changed from 2.6 to 1.6 rad around β = 0.66
and the gait changed from the trotting gait to the walking
gait. In contrast, when we increased the locomotion speed
by decreasing the duty factor β from 0.7 to 0.55, the relative
phase Δ31 changed from 1.4 to 2.6 rad around β = 0.61 and
the gait transitioned from the walking gait to the trotting gait.
The trot-to-walk and walk-to-trot transition speeds clearly
differ and hysteresis loop appears in this walk–trot transition.
These results are similar to those of the robot experiments
without additional load in our previous work [2].

Next, we put a weight of 150 g on the body and investi-
gated how the size of the hysteresis loop changes. Figure 6
shows the results of the relative phase Δ31 plotted at the
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Fig. 6. Gait transition of the quadruped robot induced by changing the
locomotion speed through the duty factor β when a weight of 150 g
was put on the body. Relative phase Δ31 changed between 1.4 and
2.6 rad and hysteresis appeared. Although the walk-to-trot and trot-to-
walk transition speeds were fluctuated, the duty factors of the trot-to-walk
transition decreased and the hysteresis loop reduced relative to the case
without additional weights.

foot contact of Leg 1, showing three trials for each increase
and decrease of the locomotion speed. In this case, the
relative phase Δ31 changes between 1.4 and 2.6 rad and
hysteresis appeared, similar to the case without additional
weights (Fig. 5). Although the walk-to-trot and trot-to-walk
transition speeds were fluctuated, the duty factors of the trot-
to-walk transition decreased (the trot-to-walk transition speed
increased). This resulted in the reduction of the hysteresis
loop.

To further clarify the influence of the additional weight
on the gait dynamics of our quadruped robot, we increased
the additional load to 250 g and examined how the size of
the hysteresis loop changes. Figure 7 shows the results of
the relative phase Δ31 plotted at the foot contact of Leg
1, illustrating three trials for each increase and decrease of
the locomotion speed. In this case, the relative phase Δ31

changes between 1.4 and 2.6 rad and hysteresis appeared,
which is similar to the cases without additional weights and
with a load of 150 g (Figs. 5 and 6). The walk-to-trot and
trot-to-walk transition speeds were further fluctuated, but the
duty factors of the trot-to-walk transition decreased, which
caused further reduction of the hysteresis loop in the walk–
trot transition.

To clearly show the changes in the size of the hysteresis
loop depending on the additional load, we calculate the qual-
itative change of the size. For that purpose, we determined
the walk-to-trot and trot-to-walk transition speeds by the duty
factors when the relative phase Δ31 exceeds 2.3 rad for the
walk-to-trot transition and falls below 2.1 rad for the trot-to-
walk transition. We used the difference between the walk-
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Fig. 7. Gait transition of the quadruped robot induced by changing the
locomotion speed through the duty factor β when a weight of 250 g was
put on the body. Relative phase Δ31 changed between 1.4 and 2.6 rad
and hysteresis occurred. Relative to the cases without additional loads and
with a load of 150 g, the walk-to-trot and trot-to-walk transition speeds
were further fluctuated, but the duty factors of the trot-to-walk transition
decreased and the hysteresis loop further reduced.

to-trot and the trot-to-walk transition speeds for each pair of
accelerating and decelerating trials to evaluate the size of the
hysteresis loop. Figure 8 shows the result of the hysteresis
size (mean ± SD) for each additional weight. As shown
in this figure, the hysteresis size reduced as the additional
load increased. This trend is consistent with the locomotion
dynamics in which the cusp catastrophe is embedded (Fig. 1).

V. DISCUSSION

In this paper, we investigated the dynamic characteristics
in the gait of a quadruped robot whose legs are controlled by
nonlinear oscillators with phase resetting. The experimental
results showed that the robot produced the walking and trot-
ting gaits depending on the locomotion speed and exhibited
the walk–trot transition with hysteresis induced by changing
the locomotion speed. In addition, the additional load put
on the robot body reduced the hysteresis size, as observed
in the locomotion dynamics in which the cusp catastrophe
is embedded. However, because of the hardware limitation
of our quadruped robot, we could not use more additional
weights for the experiment. Therefore, the hysteresis did not
yet vanish and we could not completely prove the cusp catas-
trophe in the gait transition of our quadruped robot. However,
our result of the reduction of the hysteresis loop depending
on the additional load surely suggests the existence of the
cusp bifurcation, as observed in the simulation study of our
previous work [3].

So far, to elucidate the determinants of gait transitions
in humans and animals, researchers have searched for a
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Fig. 8. Dependence of the hysteresis size of the walk–trot transition on
the additional load (mean ± SD), calculated by the duty factors at the
walk-to-trot and trot-to-walk transitions. The hysteresis size reduced as the
additional weight increased.

potential trigger to change the gait. For example, Mar-
garia [22] and Hoyt and Taylor [14] showed that humans
and horses employ gaits that minimize metabolic cost and
they suggested that humans and animals switch their gaits
to reduce the metabolic cost. On the other hand, Farley and
Taylor [9] state that it is difficult to imagine how animals can
sense metabolic cost in rapid gait transitions; rather, they
consider another criterion, such as biomechanical factors,
as the trigger. In addition, Griffin et al. [11] suggested
that biomechanical and metabolic factors are tightly coupled
at the gait transition. However, there are many conflicting
reports regarding the roles of metabolic and biomechanical
factors in determining gait transitions [15], [16], [24], [29],
[39]. An alternative approach is based on dynamic systems
analysis [2], [7], [32], as adopted in this paper. In this
approach, gaits are viewed as the results of self-organization
in complex dynamic system and gait transitions occur when
the stability of a gait decreases so much that switching to
a new gait improves stability [11]. Simulation studies us-
ing neuromechanical models and experimental studies using
legged robots by integrating biomechanical and physiological
findings must be useful tool to investigate underlying mecha-
nisms of the gait generation and transition in the locomotion
dynamics. In particular, elucidating bifurcation structures in
the locomotion dynamics must provide meaningful biological
insights [4].

Cusp catastrophe is a typical characteristic of nonlinear
dynamic systems, as observed in the forced Duffing oscilla-
tor [36]. To better understand the underlying mechanism in
the gait transition of the locomotion dynamics, in the future
we should develop a more sophisticated physical model as
well as a more biologically plausible robot.
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