
EEG-Based Classification of Upper-Limb ADL Using SNN for Active
Robotic Rehabilitation*

Jin Hu1, Zeng-Guang Hou1, Yi-Xiong Chen1, Nikola Kasabov2 and Nathan Scott2

Abstract— Repetitive activities of daily living (ADL) and
robotic active training are commonly practised in the re-
habilitation of paralyzed patients, both of which have been
proven rather effective to recover the locomotor function of
impaired limbs. ADL classification based on electroencephalo-
gram (EEG) is of great significance to perform active robotic
rehabilitation for patients with complete spinal cord injury
(SCI) who lose locomotion of affected limbs absolutely, where
surface electromyography (sEMG) or active force signal can
hardly be detected. It is a challenge to achieve a satisfying
result in neuro-rehabilitation robotics using EEG signals due
to the high randomness of the EEG data. A classification
method is proposed based on spiking neural networks (SNN)
to identify the upper-limb ADL of three classes with 14-
channel EEG data. The continuous real-number signals are
firstly encoded into spike trains through Ben’s Spike Algorithm
(BSA). The generated spikes are then submitted into a 3-D
brain-mapped SNN reservoir called NeuCube trained by Spike
Timing Dependant Plasticity (STDP). Spike trains from all
neurons of the trained reservoir are finally classified using
one version of dynamic evolving spiking neuron networks
(deSNN) - deSNNs. Classifications are presented with and
without NeuCube respectively on the same EEG data set.
Results indicate that using the reservoir improves identification
accuracy which turns out pretty promising despite that EEG
data is highly noisy, low frequently sampled, and only from 14
channels. The classification technique reveals a great potential
for the further implementation of active robotic rehabilitation
to the sufferers of complete SCI.

Index Terms— Active robotic rehabilitation, ADL classifica-
tion, EEG, SNN, NeuCube.

I. INTRODUCTION

The number of patients with paralysis is currently growing
significantly with an accelerating increase rate resulting
from high incidence of cerebrovascular diseases and various
accidents. Rehabilitation is a primary therapy to them after
instant treatment, which is usually a long-time process, and
sometimes may continue throughout most of their entire
lifetimes. In the traditional therapy the neurorehabilitation
process of affected limbs of paralyzed sufferers is normally
carried by physiotherapists to practise patients movement
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passively. Deficient training modes as well as non-repetitive
exercises result in limited rehabilitation effect, while the
traditional method is costly, time-consuming and labour-
intensive. Rehabilitation robots can provide various repetitive
training strategies, reduce the cost and time consumed and
also release patients and therapists from heavy physical
burden, resulting in better rehabilitation methods.

Rehabilitation exercises with robotic devices can be broad-
ly classified into two categories, passive and active training
strategies, depending on whether voluntary contribution of
patients is involved. Passive training is actuated completely
by robots which carry the affected limbs to perform prede-
fined movements requiring no autonomous participation of
patients. Active training on the other hand always adapts
to the voluntary effort of patients while robots provide
necessary assistance to implement desired movements, which
tends to be more effective for limb rehabilitation [1], [2]
than passive exercises since the paralyzed patients are mo-
tivated to contribute the training practices initiatively. The
surface electromyography (sEMG) and active force signals
are usually gathered to extract voluntary movement intention
of patients [3]–[9], which requires that the injured limbs
can still partially control the muscle contraction and produce
some strength at least. Therefore, active robotic rehabilitation
usually applies to incomplete paralyzed patients who retain
or regain certain locomotor function of impaired limbs.

Repetitive activities of daily living (ADL) such as reaching
to grasp for upper limbs and walking for lower limbs are vali-
dated as fairly helpful to restore the locomotor function of pa-
tients with paralysis [10]–[13]. Due to the real-life meaning,
task-oriented property and multi-joint coordination, ADL
keep enhancing positive feedback to central nervous system
of paralyzed sufferers more intensively than simple mean-
ingless movements such as single-joint extension/flexion or
abduction/adduction. Hence, ADL are usually adopted as
training movements to exercise injured limbs in traditional
therapy as well as robotic rehabilitation. Typically, body
weight support treadmill training (BWSTT) is a commonly
practised movement for the paraplegic patients to recover the
walking abilities of affected lower limbs, widely applied in
both traditional and robotic rehabilitation.

The exercises combining active robotic training with ADL
are supposed to be very effective for rehabilitation. But for
the sufferers with complete spinal cord injury (SCI) whose
locomotor function is totally lost, the voluntary movement
intention is almost impossible to be obtained from sEMG
or active force of injured limbs. These signals generated by
patients are too weak to be detected since they can barely
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control the ill limbs, while electroencephalogram (EEG) is
still strong enough to be collected for the extraction of vol-
untary movement intention. Hence, EEG-based classification
of ADL is of great significance and has a great potential
to implement active robotic rehabilitation for patients with
complete SCI. It is however quite challenged to achieve a
satisfying identification result due to the high randomness of
EEG data. In this paper, classification of upper-limb ADL is
performed only with the use of EEG data based on spiking
neural networks (SNN). The proposed method presents a
promising accuracy of identification in spite of the simple
equipment and consequently the noisy and low frequently
sampled EEG data only from 14 channels.

The remainder of the paper is organized as follows.
Section II introduces the equipment, three ADL scenarios
and the protocols for EEG data acquisition. In Section III, the
procedures of EEG data classification are described in detail.
EEG data encoding, the 3-D brain-mapped SNN reservoir
called NeuCube as well as the classifier are presented in cor-
responding subsections. Section IV depicts the classification
results and raises some discussion, where the identification
accuracy is compared between the classification techniques
with and without NeuCube. The last section comes up with
the conclusion and future work.

II. EEG DATA ACQUISITION

The non-professional equipment, Emotiv, was employed
for EEG data acquisition in this study. It has only 14 channels
with low sampling frequency of 128Hz, i.e. merely 128 data
points can be recorded per second for each channel. Emotiv is
inexpensive and very easy-to-use, but the number of channels
is highly limited and the EEG signals can be easily interfered
by even slight body and facial movements such rolling
eyeballs. Hence, EEG data collected with the equipment was
expected to be rather noisy. It is quite a challenge to obtain
satisfying classification results from EEG data set with high
noise, insufficient channels and low sampling frequency.

We are aiming at the development of personalised neuro-
rehabilitation robots that can be adapted to a person based
on his/her EEG data. To illustrate this method, one healthy
male subject was involved in the EEG data acquisition. He
was asked to perform three different types of ADL with
the left upper limb. The movement scenarios are shown in
Fig. 1, including idle state, eating and pulling trousers. For
idle state, the subject was told to just relax and stay still as
indicated in Fig. 1(a), trying not to think about anything. For
the other two activities, the subject was told to begin with
idle state and finish with the gestures shown in Fig. 1(b)
and 1(c) respectively. During all three ADL, he maintained
standing orientation with his eyes closed, meanwhile tried to
reduce unnecessary movements for the purpose of decreasing
potential interference to EEG signals as much as possible.

One supervisor was required to coordinate the whole
process of data acquisition. However, it is not necessary that
he/she has accepted medical training. The subject started
each activity with the voice command of ’GO’ from the
supervisor, and finished the movement within 1 second.

The collection of EEG data was initiated by the supervisor
at the same time with the duration of 1 second as one
sample, i.e. each sample contained 128 data points for each
channel. Before the data acquisition, the subject was allowed
to practise the ADL as much as needed till he felt ready. After
that, the subject was asked to repeat each movement for 10
times, i.e. 10 samples for each ADL were collected overall,
which were divided into two subsets: 5 of the samples
were used to train the NeuCube and the classifier, and the
remaining 5 ones for validation.

(a) Idle State (b) Eating (c) Pulling Trousers

Fig. 1. EEG Data Collection Scenarios

III. EEG-BASED CLASSIFICATION OF ADL

Fig. 2 shows the principle block of active robotic re-
habilitation based on the classification of ADL, where the
SNN-based reservoir and classifier are employed to visu-
alize, process and identify the input signals of EEG data
collected from subjects. The real-number raw EEG data of
continuous value has to be firstly converted into spike trains
with the encoding method. Then the generated spike trains
are sequently fed into a 3-D brain-mapped reservoir called
NeuCube which is actually composed of large scale SNN.
Afterwards, the SNN-based classifier presents identification
of ADL with spike trains produced by all the neurons of
trained NeuCube. The identification results can be further
considered as the control command of robotic rehabilitation
devices to perform active training exercises on paralyzed
patients with complete SCI when he/she is imagining the
movements, so that robots can assist the impaired limbs to
practise the ADL which patients desire. This will be the
concentration and elaborately investigated in our future work.

The encoding method needs to be tuned to ensure an
appropriate density of spike trains and that EEG data can be
well recovered from the converted spike trains. The SNN-
based reservoir and classifier have to be trained in sequence
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before the classification method can be recalled. The training
is performed twice separately using different learning meth-
ods with the following procedure. Firstly, NeuCube learns the
spike trains converted from the training samples of EEG data
through an unsupervised learning method. Afterwards, the
SNN classifier learns spike trains from the trained NeuCube
on training samples with a supervised learning method.
Before real-time application, the trained system is supposed
to be performed on the test samples to validate its feasibility
and classification accuracy.
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Fig. 2. Principle Block of Active Robotic Rehabilitation with EEG

A. Encoding

Real-number signals of continuous value are converted
into spike trains commonly utilizing three encoding meth-
ods, which are Population Rank Coding (PRC), Address
Event Representation (AER) and Ben’s Spike Algorithm
(BSA) [14]–[16]. BSA is employed to encode the EEG data
collected from the ADL scenarios described above since the
analog EEG signals recovered from spike trains are much
more consistent with the original ones when using BSA than
the other two encoding methods.

EEG data was firstly normalized into the range of [0 1]
where 0 represents the minimum and 1 the maximum value,
and then the normalized signals are transformed into spike
trains with BSA encoding method where a linear finite
impulse response (FIR) filter and a threshold is required. The
size of FIR filter as well as the threshold need to be well
tuned to achieve the best recovery of EEG from the encoded
spike trains by minimizing the error err represented as

err =

∑
|eeg − eegest|∑

eeg
(1)

where: eeg represents the original recorded EEG data; eegest
is the reconstructed data from BSA encoded spike trains. For
the particular EEG data set sampled from aforementioned
ADL scenarios, the size of FIR filter was optimized as 7 and
the threshold as 0.679 by trial and error. The corresponding
err in (1) is minimized to 0.16%. The FIR filter employed in
BSA to encode EEG data is indicated in Fig. 3, coefficients of
which are normalized so that the summation of them equals
to 1.

With the filter size and threshold optimized above, the
encoding and decoding results are shown in Fig. 4 with
the time length of 1 second. The estimated and the original

EEG signal of one channel from one sample are compared
in Fig. 4(a) where the red dashed line indicates the EEG
data decoded from spike trains, and the actual EEG data
is represented by the solid line in blue. The comparison
reveals EEG data is well recovered from the spike strains.
Fig. 4(b) shows the corresponding spike trains encoded by
BSA method. Each vertical bar represents a spike emitted at
this channel at that moment. An appropriate density of spike
trains is also ensured by BSA encoding.
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Fig. 3. Curve of Linear FIR Filter
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Fig. 4. BSA Encoding Method

B. NeuCube

NeuCube is a 3-D SNN reservoir that specifically deals
with brain data such as EEG and functional magnetic reso-
nance imaging (fMRI) data proposed by N. Kasabov [17],
[18]. It is an approximate map of human brain with its
neurons assigned to particular locations based on brain
coordinate systems such as Talairach coordinate system
and Montreal Neurological Institute (MNI) atlases. Each
neuron in NeuCube belongs to a specific functional and
structural area as in a human brain according to its (x,y,z)
coordinates. NeuCube can provide high-level visualization of
brain activity during the data processing. We can visualize
how the spike signals transmit in the brain, which brain
areas are highly or barely activated, whether connections
between neurons are strengthened or weakened, and how the
connections as well as neuron spiking activities change from
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random initialization to a stable pattern during training on a
particular data set.

Two neuronal models are commonly used in NeuCube,
leaky integrate and fire model (LIFM) and probabilistic
model. Although studies show that better results can be
derived from probabilistic model, it is difficult to be well
tuned since there is too many parameters and this task is
planned as future work. Therefore, LIFM is used in this
study, and the total post synaptic potential (PSP) of neuron
i at time t, ui(t) is calculated as

ui(t)=

{
0, t<ts(i)+tr
ui(t−tu)+

∑
j=1,··· ,1471

ej(t)wji(t)−uleak, otherwise (2)

where: ts(i) is the last spiking time of neuron i; tr denotes
the refractory time of the neurons after a spike emitted; tu
represents one time unit; ej(t) = 1 if there is a spike at
synapse j at time t, ej(t) = 0 otherwise; wji(t) is the
connection weight from neuron j to i, i.e. at synapse (j, i) at
time t; uleak is leaky potential per time unit. When the PSP
of a neuron is over the potential threshold, a spike will be
emitted and the PSP will be reset to an initial value which
is 0 in this case. The neuron will not response to any input
during a refractory time.
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Fig. 5. Structure and Visualization of NeuCube

The structure and visualization of NeuCube developed in
this study are illustrated in Fig. 5, where there are 1471
neurons in total with locations based on Talairach coordinate
system, each spiking neuron representing approximately 1cu-
bic centimeter from the Talairach atlas. Fourteen of them are
input neurons whose coordinates correspond to the positions
of the 14-channel electrodes of Emotiv equipment located
on the scalp, represented in Fig. 5 by the square markers.
Two statuses of input neurons, spiking and non-spiking, are
determined directly by the input spike trains encoded from
EEG data, represented in magenta and yellow respectively.
The remaining 1457 neurons are internal ones, indicated by
the dots which also have only 2 activities, spiking and non-
spiking as well, represented in red and blue respectively. For
the internal neurons, it is determined by the neuronal model
whether they are spiking or not.

The connection weights between the neurons of NeuCube
are randomly initialized based on small world connection
(SWC) [19] principle determined by

wij(0) = cijsijαije−dij , ∀i, j = 1, · · · , 1471 (3)

where: cij = 1 if there is a connection from neuron i to j,
cij = 0 otherwise; sij = 1 if the connection is excitatory,
sij = −1 inhibitory; αij is a random factor that follows
unform distribution within the range of [0 1]; dij is the
Euclidean distance between the two neurons i and j. The
initial connections between the neurons of NeuCube satisfy
with the constraints as follows.

• Connections are established randomly following the
uniform distribution.

• No connection exists between neurons when the dis-
tance is greater than a threshold dth, which in this
case is selected as one sixth of the maximum distance
between two neurons in NeuCube,
cij = 0, if dij > dth, ∀i, j = 1, · · · , 1471.

• No neurons are connected to input neurons,
cij = 0, ∀i = 1, · · · , 1471, j = 1, · · · , 14.

• No neurons are self-connected,
cii = 0, ∀i = 1, · · · , 1471.

• All neurons are one-way connected,
cijcji = 0, ∀i = 2, · · · , 1471, j = 1, · · · , i− 1.

• Connections from input neurons to internal ones are
excitatory with positive weights,
sij = 1, ∀i = 1, · · · , 1471, j = 1, · · · , 14.

• Eighty percent of internal connections are excitatory
with positive weights, and 20% of them are inhibitory
with negative weights.

It is indicated in (3) that the connection weights decrease
with the distances between neurons increasing, which agrees
with the basic concept of the SWC.
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Fig. 6. Curve of STDP Learning Rule

Spike Timing Dependant Plasticity (STDP), utilizing a
Hebbian form of plasticity in terms of long-term potentiation
(LTP) and long-term depression (LTD) [20], is used as the
learning method to train NeuCube. The connection weights
between neurons are adjusted as

∆w = sgn(∆t)Ae−|∆t|/τ (4)

where: ∆w is a adjustment to connection weight; ∆t =
tpost − tpre is the time difference of two consecutive spikes
generated by post-synaptic and pre-synaptic neurons; A is a
scaling factor; τ is a time constant.
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The learning curve of STDP illustrated in Fig. 6 indicates
that connection weights are strengthened or weakened based
on the spiking timings of post-synaptic and pre-synaptic neu-
rons. Connected neurons can learn consecutive temporal as-
sociations from data through STDP to adjust the connection
weights. If pre-synaptic neuron spikes first, i.e. the difference
of the spike time between the post-synaptic and pre-synaptic
neurons is positive, the connection weight between the two
neurons increases, i.e. LTP occurs, otherwise it decreases,
i.e. LTD proceeds.

C. Classifier

Classifiers of evolving spiking neuron networks (eSNN),
dynamic evolving spiking neuron networks (deSNN) [21]
and Spike Pattern Association Neuron (SPAN) [22] are
usually used to deal with the outputs of NeuCube which
are spike trains of its all neurons. For this study, one version
of deSNN - deSNNs is employed which is proved a more
suitable classifier than the others through experiments.

During the training phase, one new output neuron i is
created for each input training sample in deSNNs, and the
connection weights are initialized based rank order rule as

ωji(t0) = αmodorderji (5)

where: ωji(t) represents the connection weight from input
channel j to neuron i at time t; t0 is the time when the first
spike at input channel j occurs; α is a learning parameter;
mod is a modulation factor that defines how important the
order of the first spike is; orderji is the rank order of first
spike at input channel j among all the spikes having arrived
at neuron i. For the first spike to neuron i, orderji = 0 and
increases according to the input spike order at other input
channels.

After initialization, the connection weights become dy-
namic and are adjusted through the Spike Driven Synaptic
Plasticity (SDSP) algorithm as

ωji(t) = ωji(t− tu) + fj(t)D, ∀t = t0 + tu, · · · , T (6)

where: fj(t) = 1 if there is a subsequent (non-first) spike
at input channel j at time t, and fj(t) = −1 otherwise; D
is the drift parameter; T is the time length of each sample.
After the weight vector is finalized, the optional procedure
is to combine the new created neuron into a existing one
of the same class if the distance between the two weight
vectors is less than a threshold. The distance comparison
usually involves the initial value ω(t0) and the final ω(T ).
The weight vector of the combination is the average of the
original two. It is however not performed in this case.

During the testing phase, a new output neuron is generated
for each testing sample, in the same way as the output
neurons are created during the training phase. The connection
weight vector of the newly created neuron is then compared
with the already existing neurons created during training
phase using Euclidean distance. The testing sample belongs
to the class which the closest output neuron represents. After
the sample classified, the new neuron will be removed. As
the synaptic connection weights are dynamic, the distance

should be calculated possibly using both the initial ω(t0)
and the final ω(T ) connection weigh vectors. But in this
case, only the final weight vector ω(T ) is used.

IV. CLASSIFICATION RESULTS AND DISCUSSION

Two separate classifications are performed using the clas-
sifier of deSNNs with and without NeuCube on the samples
of EEG data collected from the aforementioned scenarios of
ADL. Results of the two methods are compared to illustrate
how the 3-D reservoir affects the identification accuracy.
Table I presents the results of the two classifications on
different data sets which are overall, training and test sam-
ples, as well as test samples of classes 1, 2, and 3 which
represent idle state, eating and pulling trousers respectively.
The accuracy is up to 86.67% on test samples when NeuCube
is employed, which is quite a promising result despite the
low-grade EEG equipment utilized in this case only with 14
channels and sampling frequency of 128Hz.

TABLE I
CLASSIFICATION ACCURACY ON DIFFERENT DATA SETS

Overall Training Test Class 1 Class 2 Class 3
With NeuCube 93.33% 100% 86.67% 80% 100% 80%

Without NeuCube 86.67% 100% 73.33% 80% 100% 40%

Table II is the confusion matrix on the test samples using
deSNNs with and without NeuCube. Only 2 samples are
misclassified when NeuCube is employed, 1 sample of class
1 misclassified to class 3 and 1 sample of class 3 misclassi-
fied to class 2. While there are 4 misclassified samples when
classification is accomplished without the reservoir, 1 sample
of class 1 misclassified to class 3 and 3 samples of class
3 misclassified to class 2. The major improvement focuses
on the identification of samples belonging to the third class
which is illustrated at the last row of the confusion table.

TABLE II
CONFUSION MATRIX ON TEST SAMPLES

Predicted Class
With NeuCube Without NeuCube

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Actual Class
Class 1 4 0 1 4 0 1
Class 2 0 5 0 0 5 0
Class 3 0 1 4 0 3 2

Overall Training Test Class 1 Class 2 Class 3
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Fig. 7. Classification Accuracy on Different Data Sets
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The classification accuracy of deSNNs with and without
NeuCube on different data sets is also presented and com-
pared in Fig. 7, where the blue and green bars indicate the
results of the classifier with and without the 3-D reservoir
respectively. It is obviously that NeuCube improves the
classification accuracy. The reservoir maps the 14-channel
spike trains into large scale SNN, which not only provides
a high-level visualization of EEG data mimicking the brain
activities but also generates more distinguishable features.
The technique has a great potential for rehabilitation evalua-
tion by visualizing EEG data in different stages of a gradual
therapy. And the highly distinguishable outputs reveal a great
potential for the further implementation of active robotic
rehabilitation to the sufferers of complete SCI.

V. CONCLUSION AND FUTURE WORK

An EEG-based classification of upper-limb ADL has been
accomplished using SNN. Promising classification results
are achieved even though the EEG acquisition equipment
is low-grade and consequently the EEG samples are of high
noise, low frequent collection as well as limited number of
channels. This output can be further employed as the control
command for the purpose of active robotic rehabilitation to
paralyzed sufferers with complete SCI. Comparison between
classification results of deSNNs with and without NeuCube
has verified that the 3-D brain-mapped reservoir can improve
the classification results as it performs deep learning of
spatio-temporal EEG patterns. The SNN-based NeuCube has
been proven an effective method to process, visualize and
classify EEG data.

For the future work, similar studies will be performed with
more advanced EEG equipment which can collect EEG data
of less noise and sufficient channels (128 to be specific) with
much higher sampling rate. Better results can be expected
given the satisfying outcome of the current research. Since
paralyzed patients with complete SCI cannot actually move
their affected limbs, EEG data collected from imaginary
scenarios will be explored for the classification instead of
data from actual movement. All the ADL classified in this
paper are short discrete movements and carried out by upper
limbs. Further work will investigate the classification of
lower-limb ADL as well as continuous movements. Most
importantly, the classification techniques and robot control
schemes will be combined together to implement active
robotic training strategies which can even apply to the
rehabilitation of paralyzed patients with complete SCI.
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