
  

 

Abstract— Users of a brain-computer interface (BCI) learn to 

co-adapt with the system through the feedback they receive. 

Particularly in case of motor imagery BCIs, feedback design can 

play an important role in the course of motor imagery training. 

In this paper we investigated the effect of biased visual feedback 

on performance and motor imagery skills of users during BCI 

control of a pair of humanlike robotic hands. Although the 

subject specific classifier, which was set up at the beginning of 

experiment, detected no significant change in the subjects’ 

online performance, evaluation of brain activity patterns 

revealed that subjects’ self-regulation of motor imagery features 

improved due to a positive bias of feedback. We discuss how this 

effect could be possibly due to the humanlike design of feedback 

and occurrence of body ownership illusion. Our findings suggest 

that in general training protocols for BCIs, realistic feedback 

design and subject’s self-evaluation of performance can play an 

important role in the optimization of motor imagery skills. 

 

 

I. INTRODUCTION 

Brain computer interfaces (BCIs) provide a direct 

communication channel between a human brain and a 

computer. Subjects can learn to intentionally modulate their 

brain activities in order to translate their intention into 

meaningful commands for an external machine. Motor 

imagery, is one of the most commonly employed methods for 

BCI motion control [1].  Subjects imagine the movement of a 

part of their own body and the BCI detects the corresponding 

changes in mu and beta rhythms over sensorimotor cortex. 

Since the movement imagination without execution is an 

unfamiliar experience to most people, motor imagery task 

requires relatively long training sessions for novice BCI 

users. 

As in any form of training paradigm, users of BCIs 

improve their skills in motor imagery task through the 

feedback they receive of their performance. Therefore 

feedback design is particularly influential in the process of 

motor imagery learning and performance improvement. 

While the importance of BCI feedback design is well 

recognized, very few studies have challenged new training 

paradigms that can facilitate the learning process for subjects 
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[2]. Standard BCI protocols typically provide online visual 

feedback in the form of a moving cursor or target on the 

computer screen. Neuper et. al [3] compared realistic 

presentation of feedback, in form of a grasping hand, vs 

abstract feedback, in form of an extending bar, on a computer 

screen. However, they found no evidence of a significant 

difference between the performances of two feedback groups. 

In other study, authors biased the feedback accuracy and 

investigated the influence of motivation on BCI performance 

[4]. The results indicated that subjects with poor performance 

benefitted from positive biasing while those with better 

performance were impeded by inaccurate feedback. 

Similarly, Gonzalez-Franco et. al [5] provided subjects fake 

negative and positive feedback of their performance and 

reported that negative feedback had a greater learning effect 

on motor imagery BMIs. 

Although in the above works, the effect of feedback 

presentation and accuracy has been probed, none of them has 

actually discussed the direct interaction between subject and 

BCI system. When performing a motor imagery task, subjects 

are asked to imagine their own body movements while the 

output is fed back in the form of movement for objects other 

than their own body. This mismatch and dissociation between 

subject’s life experience and BCI task can in fact interfere 

with the imagination and impair the performance of motor 

imagery especially for novice users.   

The goal of the present study is to explore the influence of 

feedback design on enhancement of user’s performance and 

interaction with a BCI system. We previously showed that 

BCI-control of a pair of humanlike robotic hands along with 

real time first-person perspective visual feedback of robot’s 

motions could arouse an illusion of embodiment in the 

operators  [6]. Subjects reported a sense of owning the robot’s 

hands after a certain amount of BCI-operation, and showed 

physiological reaction when robot’s hands were threatened. 

In the following, we call this feeling of embodiment “body 

ownership illusion”. Our results also revealed that the 

intensity of the body ownership illusion was associated with 

feedback presentation and subjects’ performance during BCI 

motion control. We hypothesized that inducement of such 

feeling of owning robot’s body and the sense of agency 

driven toward the seen motions may have a positive loop 

effect on execution of motor imagery during BCI-operation. 

In other words, we speculated that once the thought of “I am 

the one moving the hands” raises the feeling of “These hands 

are mine”, the illusion of owning hands enhances the imagery 

ability in subjects and boosts the inverse thought of  “These 

are my hands so I can move them”. 

To that end, in this study we used the same 

BCI-teleoperation paradigm while exposed naïve subjects to 
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different feedback conditions in order to probe the 

relationship between subject’s experience of BOT and 

BCI-performance. Two experiments are presented. In the first 

experiment, by manipulating the presentation of 

misperformance, we surveyed how subjects’ perception of 

their own performance could affect the intensity of BOT. In 

the second experiment, we then examined how this effect can 

be influential on subjects’ real performance and trend of 

motor imagery learning. 

II. METHOD 

A. Participants 

Sixteen healthy subjects (6 male and 10 female, age 
M=21.1, SD=1.4) participated in this experiment. 15 
participants were right-handed and one left-handed. All 
participants were naive to research topic and received 
explanation prior to the experiment. 

B. EEG recording 

Brain signals were recorded by g.USBamp biosignal 
amplifiers (Guger Technologies) from 27 EEG electrodes that 
were placed over primary sensori-motor cortex according to 
the international 10-20 system (FT7, FC5, FC3, FC1, FCz, 
FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, 
TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8). A reference 
electrode was mounted on the right ear and a ground electrode 
on the forehead.  

C. Experimental paradigm 

Participants sat in a comfortable chair and the experimenter 

placed the EEG electrodes. In an initial training session, they 

practiced a motor imagery task by extending a feedback bar to 

the left or right side on a 15-inch laptop computer screen. A 

visual cue in form of a horizontal pointing arrow specified the 

timing and the hand they were supposed to hold image for. 

Each trial lasted 7.5 seconds and started with the presentation 

of a fixation cross on the display. After 2 seconds, an acoustic 

warning was given in form of a “beep”. From second 3 to 

4.25, an arrow pointing to the left or right side randomly was 

displayed. Participants were instructed to perform motor 

imagery depending on the arrow's direction. After the arrow 

disappeared continued the imagery task until the fixation 

cross was erased. After a short pause the next trial started. The 

first run consisting of 40 trials (20 trials per class left/right 

presented in a randomized order) was conducted without 

feedback. The recorded brain activities in this initial 

non-feedback run were used to set up a subject specific 

classifier for the classification in the following feedback runs 

(See details in section II-D). In the following feedback runs, 

participants performed similar trials, however received online 

feedback of their performance in form of a horizontal 

feedback bar on the screen that extended to right or left side 

based on the classification results. Subject’s task was to 

extend the feedback bar in the correct direction.  

Following to the training sessions, experiment was 

continued to the main test sessions, in which subjects wore a 

head mounted display (Sony HMZ-T1) and tele-operated 

robot’s hands using the same BCI system and paradigm. They 

performed a motor imagery task for their right or left hand 

while they watched first-person perspective images of robot's 

hands performing the motions respectively (Fig. 1). Two 

LED-embedded balls were installed in robot’s grasp and gave 

motor imagery cue by randomly lighting. During experiment 

subjects were told to keep a looking down posture as if they 

were looking at their own hands. Identical blankets were laid 

on both robot’s and participants’ legs to give similar view of 

one’s own body. Participants placed their arms in the similar 

position and orientation of robot’s arms. They performed 4 

experimental sessions each consisting of 40 imagery trials. 

The first half of each session (20 trials) was randomly 

conditioned as below: 

(1) Raw: Participants’ performance was not biased. 

Robot’s hands grasped the ball according to the 

classification result.  

(2) Match: Participants’ performance was not biased. 

However robot’s hands only grasped the lit ball 

when the classification results matched the cue.  

(3) Positive Feedback (Fake-P): Participants’ 

performance was biased positively. Robot’s hands 

grasped the lit ball correctly in 90% of trials 

regardless of subject’s real performance. 

(4) Negative Feedback (Fake-N): Participants’ 

performance was biased negatively. Robot’s hands 

grasped the lit ball correctly only in 20% of trials 

regardless of subject’s real performance. 

In the first two conditions, Raw and Match, subject’s 

performance was not biased however the presentation of 

mistaken trials were different –one with execution of wrong 

hand motion and one without robot motion. In Fake-P and 

Fake-N conditions the visual feedback of performance was 

biased regardless of subjects’ real performance accuracy in 

order to deliberately enhance or decrease their 

self-evaluation. Subjects were unaware of the condition 

setups. In all sessions they were told that accurate execution 

of motor imagery task would produce a robot motion.  

 
 

 

Fig. 1. EEG electrodes placed on subject’s sensorimotor cortex recorded 

brain activities during a motor imagery task. Subjects watched 
first-person images of robot’s through a head mounted display. A 

lighting ball in front of robot’s hands gave motor imagery cue and 

subjects held images of a grasp for their own corresponding hand. 
Classifier detected two classes of results (right or left) and sent a motion 

command to robot’s hand. 
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In the second half of all sessions subjects received 

feedback of their real performance in the same presentation of 

Raw condition. The goal was to seek changes in 

BCI-performance and motor imagery skills in the second half 

of each session due to the manipulation or bias of visual 

feedback.  

Moreover at the end of each session the following 

question regarding subjects’ experience of BOT was asked: 

Q) Throughout the entire session while you were operating 

the robot’s hands, did it feel as if robot’s hands were your 

own hands? Participants scored Q based on the seven-point 

Likert Scale, where 1 denoted, “Didn't feel such thing at all” 

and 7 denoted, “Felt it very strongly”.  

D. Online classification 

Recorded brain signals were processed under 

Simulink/MATLAB (Mathworks) for both online and offline 

parameter extractions. The data in the first calibration session 

were used to train the classifier. This process included 

bandpass filtering between 0.5 and 30 Hz, sampling at 128 

Hz, cutting off artifacts by notch filter at 60 Hz, and adopting 

Common Spatial Pattern (CSP) algorithm for discrimination 

of Event Related Desynchronization (ERD) and Event 

Related Synchronization (ERS) patterns associated with 

motor imagery task [7]. CSP found weight vectors that 

weighed each electrode based on its importance for the 

discrimination task. The spatial filters were designed such 

that the resulting signal had maximum variance for left trials 

and minimum variance for right trials. Therefore the 

difference between left and right populations was maximized 

to show where the EEG variance fluctuated the most. After 

computing feature vectors by averaging the variance and 

calculating the logarithm, Fisher’s linear discriminant 

analysis (LDA) was applied for distinction of left versus right 

hand trials. The signals recorded in the first non-feedback 

session were used to set up the decision border for a subject 

specific classifier. In the feedback sessions the system used 

the individual classier of each participant to discriminate 

between left and right imaginations. The results of classifier 

were then outputted as a linear array signal in the range of 

[-1,1], where -1 denotes the extreme left and 1 denotes the 

extreme right. Negative values were then translated as grasp 

motions for robot’s left hand and positive values were 

commanded as grasp motions for robot’s right hand. 

E. Offline classification 

Since the classifier does not use a learning algorithm, once 

the classification boundary for two classes “Right” and “Left” 

is defined within the feature space in the initial recording 

session, the same classifier and parameters are used to the end 

of the experiment. On the other hand, we speculated that by 

receiving biased feedback or experiencing body ownership 

illusion, subjects would consciously or unconsciously modify 

the generation of their brain activity patterns during motor 

imagery. However an initially set classifier may not detect 

this optimization of brain patterns accurately. Therefore, we 

used the original brain signals and extracted class features of 

right and left motor imagery through offline processing to 

observe the distribution and separability of motor imagery 

features in the feature space.  

After artifact removal and temporal filtering [7], the 

features used for classification were obtained by the method 

of CSP. Having N channels of EEG for each left and right 

trial X, the CSP builds an N × N projection matrix W. With 

the projection matrix W, the mapping of a trial is given as  

 

                                                                            (1) 

 

The columns of W
-1

 are the common spatial patterns and 

can be seen as time-invariant EEG source distribution 

vectors. By construction the variance for left movement 

imagination is largest in the first row of Z and decreases with 

the increasing number of subsequent rows. To obtain reliable 

features, it is not necessary to calculate the variances of all N 

time series. The optimal number of common spatial patterns 

used to build the feature vector is four [8]. Therefore, only the 

first and last two rows (p = 4) of W were used to filter data X 

and build new signal Zp (p = 1… 4). The variance of the 

resulting four time series is obtained for a time window 
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where window length was set 1s, starting 1500ms after the 

presentation of the cue [9]. Feature vectors were obtained 

after normalizing and log-transforming as following: 
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The online classifier uses each trial’s feature vector fp to 

categorize it into two classes of right and left. In order to 

evaluate the goodness of this classification, we used the 

following discriminant criterion measures (measures of class 

separability) in the discriminant analysis [10] to observe the 

distribution of two classes (Right and Left) feature vectors in 

a 4-dimential space:  
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are the between-class scatter and within-class scatter 

respectively.    and   denote the probabilities of class 

occurrence, and  ̃  and  ̃  are the class means respectively. 

The quantity | ̃   ̃ |
  is the distance between two classes’ 

means.  For each class,  ̃ 
  and  ̃ 

  are class variances, 

obtained by  
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When performing motor imagery a larger   corresponds to 

closer dispersion of feature vectors per each class and further 

distance between two class means, which represents better 

feature distribution for classification and therefore better     

execution of motor imagery task (Fig. 2).  

 

 

F. Evaluation 

We examined the effect of feedback conditioning on the 

trend of learning by two measurement methods; 1) subjects’ 

online performance in the second half of sessions and 2) 

time-variant distribution of EEG features regarding right and 

left hand imagery between first and second halves of each 

session. 
 

III. RESULTS 

Results were obtained from the online measurements of 
subjects’ BCI performance and offline analysis of their 
recorded EEG signals. The offline analysis was performed in 
order to find the changes in subjects’ motor imagery patterns 
that the classifier failed to detect. Similar to most of BCI 
paradigms, the classifier used in this experiment employed the 
subject specific discriminative parameters that were set in the 
initial calibration session. However this type of classifier can 
perform poorly as subjects’ ability in generating motor 
imagery patterns is expected to improve due to both 
successive sessions and feedback bias. Therefore, in addition 
to subjects’ online performance, we sought a pattern 
transformation in the original motor imagery features.  

 

A.  Online performance 

Performances of 16 subjects in the second half of each 

session were averaged and compared by Tukey-HSD multiple 

comparison method. The term performance refers to the 

percentage of successful trials among the post 20 trials. 

Fake-P (M=60.78, SD=10.24) showed the highest 

performance compared to Raw (M=49.22, SD=9.07), Match 

(M=54.37, SD=10.89) and Fake-P (M=50.47, SD=10.58). 

However no significant difference was found between these 

sessions.  

Meanwhile, participants’ average scores for body 
ownership illusion in each condition were averaged and 
depicted on Fig. 3. Fake-P condition (M=4.44, SD=1.01) 
showed a significantly higher BOT compared to all other three 
conditions Raw (M=3.25, SD=1.03), Match (M=3.38, 
SD=1.11) and Fake-N (M=2.75, SD=0.90); [Fake-P > Raw, 
Match, Fake-N, p < 0.001]. Significant difference was also 
found between Match and Fake-N; [Match > Fake-N, p < 
0.05]. 

B. Offline EEG features 

In each session,   parameter for the first 20 conditioned 

trials (    ) and for the second 20 test trials (    ) was  

calculated. Since subjects’ initial skills were diverse, and for 

every subject the order of sessions was considerable in the 

amount of motor imagery skills, the ratio         ⁄  was 

selected as a measurement of subjects’ motor imagery 

learning in that particular session. We initially calculated    
for all 16 subjects however using interquartile range (IQR) for 

statistical dispersion in each condition [11], two outliers were 

detected in Fake-N condition (S2 and S4) and one outlier was 

detected in Raw condition (S15). The data of these three 

subjects were discarded from further analysis. The values of 

∆J in each session for the remaining 13 subjects are shown in 

Fig. 4a. ∆J for 13 subjects was averaged in each condition and 

compared by Tukey-HSD multiple comparison method. The 

mean value was highest in Fake-P condition (M=4.25, 

SD=2.35) compared to other three conditions Raw (M=2.15, 

SD=1.50), Match (M=3.74, SD=1.90) and Fake-N (M=2.70, 

SD=1.68). Significance difference was obtained between 

Fake-P and Raw; [Fake-P > Raw, p < 0.05] and between 

Match and Raw; [Fake-P > Raw, p < 0.1] (Fig. 4b).  

S5 showed the highest ∆J in the Fake-P session. To better 

display the effect of body ownership illusion on motor 

imagery learning, the obtained feature vectors for this subject 

in two halves of Fake-P session are demonstrated in Fig. 4c. 

We used principle component analysis to reduce the feature 

space dimensions into a 2D space. As can be seen in this 

                             
 

Fig. 2. J parameter, a measure of class separation, is obtained as a ratio of 

between-class variance to within-class variance. A larger J indicates a 

better separability of feature sets regarding right and left classes, which 
corresponds to the subject’s skill in generating distinct brain features 

during a right or left motor imagery task. 

between 

within 

within 

                            
 

 
Fig 3.  Subjects reported significantly higher body ownership illusion in 

the positively biased condition (Fake-P) compared to other three 

conditions. Match also revealed a significantly higher BOT score 

compared to Fake-N condition. 
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figure the separability of right and left hand trials as well as 

value of parameter J has improved in the second half of the 

session compared to the first half. 

 

IV. DISCUSSION 

Online results confirmed a higher body ownership illusion 

in positively biased session however no significant changes in 

the subjects’ real time performance was found and the mean 

value of performance remained in the chance level for all 

conditions. Assuming the classifier defect in detecting the 

correct class for each feature vector as the classification 

parameters were set at the beginning of the experiment, we 

adopted an offline process of the original brain activities to 

find changes in the distribution of right and left motor 

imagery features. Results revealed that the ratio      ⁄ , an 

identifier of class separability between two halves of sessions, 

was significantly higher in Fake-P condition, where subjects’ 

performance was positively biased, than Raw condition, 

where subjects’ real performance was presented without 

manipulation. This result indicates that subjects could 

generate motor patterns that were more classifiable by CSP 

algorithm when they received an enhanced feedback of their 

operational performance. Using a statistical significance level 

of 10%, similar relation was confirmed between Match and 

Raw conditions, indicating that in Match condition where 

subjects did not receive negative feedback of their failed 

performance, motor imagery improved and they could 

produce more separable activity patterns for two imagery 

tasks of right and left grasp. Both results imply that subjects’ 

positive evaluation of their own performance had enhancing 

effect on motor imagery learning which is consistent with 

some previous reports [2]. As we could confirm significantly 

higher BOT score in the Fake-P condition, we can associate 

the improvement of motor imagery learning with the 

inducement of a stronger body ownership illusion due to a 

biased feedback, which probably facilitated imagination of 

movement in motor imagery task and eventually enhanced 

self-regulation of brain patterns in subjects. 

Unlike previous reports on biased BCI feedback, no 

significant improvement [5] or impediment [4] was found in 

the Fake-N condition compared to other conditions. 

However, S2 and S4 who were discarded from analysis as 

outliers showed drastic    increase in Fake-N condition. 

Although subjects majorly received enhanced learning in 

Fake-P condition, results of S2 and S4 could lead us to this 

assumption that the effect of biasing is closely relevant to the 

subject’s personality and the influence of motivation on 

different individuals. While there are learners who benefit 

from encouragement and positive feedback of their 

performance, there are a few who benefit more from negative 

feedback. These subjects try harder when the feedback 

informs them that they are not performing well. In future 

experiments, personality test could be used in order to 

categorize subjects into groups, so that results can be 

analyzed according to stratified personality groups.  

Lastly, although in this experiment we hypothetically 

assumed that enhancement of motor imagery learning due to 

positive bias of feedback was associated with ownership 

illusion over controlled robot’s hands, further study is 

required to veritably measure the intensity of illusion. The 

BOT measured in this experiment indicates the illusion score 

regarding the whole session, however it was more appropriate 

to measure the BOT at the end of the conditioned section, the 

first 20 trials. Despite knowing this fact, in this experiment 

we were skeptical that by pausing the session in the middle 

and asking assessment question the illusion would be 

shattered. In future, comparison between human-like and non 

human-like visual feedback under biased feedback is 

necessary to precisely verify weather illusion of body 

ownership influences the trend of motor imagery learning. 

V. CONCLUSION 

User training is one of the primary issues in development 

and application of motor imagery BCIs. As a result, 

employing a feedback design that increases the interaction 

between the user and the interface becomes critical. In this 

 

 
 

 

 
 

 

Fig. 4. (a) The trend of motor imagery learning    in all sessions for 13 

subjects (b) Mean value of    in each session, Fake-P and Match 

showed a significantly higher mean value compared to Raw at the 
statistical significance level of 5% and 10% respectively. (c) A 2D 

distribution of motor imagery features obtained from S5’s performance 

in the first and second half of Fake-P displays a better separation of right 
and left trials in this session. 
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study, we manipulated the visual feedback of performance in 

a motor imagery BCI-teleoperation system of humanlike 

robotic hands in order to probe the effect of positive and 

negative feedback bias on subjects’ experience of body 

ownership illusion and the consequent influence of this 

illusion on BCI-performance and motor imagery skills. Our 

results showed that biasing feedback could significantly 

increase the intensity of body ownership illusion in subjects 

however it could not immediately boost subjects’ 

performance in the same session. Nevertheless, the analysis 

of brain patterns revealed improvement in the learning of 

motor imagery skills when the feedback was positively 

biased. From these results we conclude that the sense of 

embodiment and the interaction between the user and BCI 

could facilitate the motor imagery task and contribute to the 

learning process.  

In terms of feedback design for future BCI systems, it is 

conceivable that a more realistic feedback presentation can 

assist novice users to train and adapt to a system faster and 

more efficiently. Also, BCI users may benefit from positive 

bias of feedback in training sessions, although their 

personality should be taken into account. Meanwhile, since 

subjects’ motor imagery skills dynamically change during a 

session based on their state of mind, further developments of 

sophisticated classifiers that customize classification 

parameters in an online session are required.  
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