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Abstract— We present a novel sampling and processing
method for detecting gait events from an insole pressure sensor.
Inspired by how tactile data is processed in the brain, we
propose the use of timing, instead of intensity, as our event
detection feature. By sacrificing the need for accurate intensity
measurements, it is possible to achieve superior temporal
resolution, which is arguably more important given the need
for timely feedback. In this paper, we demonstrate temporally
accurate gait-event detection of 1.2± 7 ms (mean and standard
deviation) for heel-strike and 0.2± 14 ms for toe-off events
compared to the reference system, and a success rate of above
97% in most trials, using only 1 bit of pressure information
per channel. Our method thus has the potential to achieve
much lower computational complexity and bandwidth, both of
which are key to low-cost, portable solutions for prosthetics,
exoskeletons or long-term gait monitoring applications.

I. INTRODUCTION

The detection of gait events is a crucial aspect of gait

analysis. Specific events in time, such as heel-strike (HS) and

toe-off (TO), are often used as markers for gait segmentation,

as they represent the start of stance and swing phases respec-

tively [1]. They are also used for characterization of gait,

and the development and evaluation of gait assist devices

and sensors. Some examples include functional electrical

stimulation (FES) orthoses for foot drop [2], [3] and cerebral

palsy toe walking [4], [5], as well as providing feedback for

control of robotic exoskeletons and prosthetics in rehabil-

itation [6], [7]. Although gait events can be identified by

trained personnel, the approach is tedious, time consuming

and therefore undesirable. The ability to automatically detect

and segment gait phases would thus be very useful for such

applications.

In clinical gait analysis, the force pressure plate remains

the gold standard for detecting gait events [8]. However,

force pressure plates are static and unsuitable for constant

monitoring of gait events beyond the laboratory environment.

They are also susceptible to false positives from weight

shifting, since they rely on a single calibrated threshold

[9]. Alternatively, gait event detection can also be done

using kinematic data [9], [10]. However, gait event detection

through kinematic data requires several assumptions to be
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Fig. 1: Illustration of rate code vs. relative spike latency code. Only one
spike per receptor is required to encode an intensity profile using latency
code, while rate code requires many spikes per receptor for the same profile.

made. For instance, the maximum vertical and horizontal

components of foot acceleration could be used to identify

foot-contact and foot-off events [8]. Such assumptions may

not be valid for subjects with abnormal gait [5].

Insole pressure sensors appear to be a good alternative

[10]. These devices usually consist of a 2-D matrix of

pressure sensors covering the entire insole. However, the

need to sample numerous sensing points quickly and ac-

curately, and at the same time processing them within the

timing constraints of the application remains a challenge.

Commercial sensors which have both high density and high

sampling rates remain very costly.

The somatosensory system of the human body faces

the same challenges too. Slowly adapting mechanoreceptors

(SA-I and SA-II) are known to encode intensity information

in their firing rate [11]. The rate code requires downstream

neurons to decode the signal via temporal averaging. How-

ever, given the fact that mechanoreceptors rarely fire at rates

of over 100 Hz, it is unlikely that our brain relies purely

on intensity information through rate coding alone, since

the decoding process would be too slow. Indeed, researchers

have discovered other codes, such as relative spike latency

codes, which are used in the processing of visual, auditory,

olfactory and somatosensory pathways [12]–[15]. Relative

spike latency codes make use of the time difference between

spikes in a population response to encode information, and

hence can operate with only a single spike per mechanore-

ceptor (Fig. 1) [16]. This principle can also be applied to

artificial tactile sensors.

Implementing such a mechanism requires appropriate en-

coding and decoding processes. In the encoding step, the
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stimulus has to be converted into spatio-temporal patterns of

spikes. This is possible through the use of binary sampling,

where a single threshold is used when converting analog

signals to digital. Although intensity information is heavily

reduced, temporal resolution could be much higher, since

the A/D step is essentially implemented by a comparator.

Hence, the time of threshold crossing at each sensing point

can be accurately determined. Combined with the uneven

pressure distribution over time as the stimulus is applied,

the relative time differences of these time points can thus

carry information unique to the stimulus.

The decoding step involves pattern recognition on the

spike patterns. This can be achieved through the use of

spiking neural networks. Several supervised algorithms exist.

Essentially, a single, fully connected neuron can be trained

to produce an action potential when the preferred stimulus

is presented. The robustness of such algorithms can be

extended through the use of liquid state machines [17], or

random postsynaptic kernels [18]. When fully trained, the

neurons can perform recognition in real time, and can even

be implemented in hardware [19].

In this paper, we demonstrate the use of relative spike time

coding for detection of gait events. In our previous paper,

we successfully applied the principle to the classification of

local curvatures [20]. In contrast to the previous problem, the

current application requires the output spike to be temporally

precise. To achieve this, we use the Synaptic Kernel Inverse

Method (SKIM) [18]. This is a supervised learning rule,

where artificial neurons are trained to recognize spatiotem-

poral patterns of spikes. The role of the neurons are then

to emit spikes of their own when their preferred gait events

occur, while remaining silent otherwise.

II. METHOD

A. Fabric insole sensor

A low cost, foot pressure sensor was made using con-

ductive fabric (Fig. 2a). The construction involves a piezo-

resistive fabric (NW-SLPA from Eeonyx) sandwiched be-

tween two layers of conductive fabric (Silver coated nylon,

LessEMF). The conductive fabric forms a row and column

matrix, where each intersection between a row and a column

constitutes a sensing element. The arrangement is then held

together using non-conductive fabric fusible interface.

A standard multiplexed readout circuit was used (Fig. 2b).

The final sensor has 92 sensing points and is trimmed to form

an insole (Fig. 2c). As the resistance at each intersection

decreases with increasing pressure, the pressure at each point

is derived by measuring the potential difference across it.

This is performed by activating each column m with a

digital high signal (5 V TTL) while deactivating other rows

with a digital low. Each row n can then be read using a

potential divider circuit, with each reading corresponding to

the potential difference at point (m,n).

For this paper, Rdiv = 220 kΩ. Each intersection was

sampled at a rate of 1 kHz with a 16 bit ADC (USB-6356,

National Instruments). Due to the sensor’s basic construction,

the response varies from point to point. However, there is no
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Fig. 2: Sensor design and readout circuitry

need for precise calibration of each point, since our approach

relies on temporal changes, not pressure intensity, as we will

explain in the subsequent sections.

B. Spike conversion

The conversion from analog data to spike output was

performed offline in a similar manner as [20]. In essence,

a hard threshold θi was applied to the analog signal. Sub-

sequently, the signal and its inverse were fed to a phasic

Izhikevich neuron [21], with parameters a = 0.002, b = 0.25,

c = -65, d = 6, I = 0.6, simulated with 0.1 ms precision. The

output from the 184 neurons was then used as the input to

the algorithm (Fig. 3). The phasic properties of the neuron

has a low-pass effect on the rapid-switching that occurs as a

consequence of having a hard threshold.

The main significance of this approach is the fact that

the algorithm computes on effectively binary readouts of

the sensor, which could be similarly achieved using much
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Fig. 3: Illustration of process from analog signals to spikes.

simpler comparator circuits. In this paper, the readout was

in analog, with the spike conversion performed offline, as

it allows us to understand the effects of various conversion

parameters on the final output.

C. Synaptic kernel inverse method

First introduced in [18], the synaptic kernel inverse method

(SKIM) is a method for solving the weights of a discrete-

time perceptron using linear regression techniques. Unlike

gradient descent methods, SKIM is not susceptible to being

trapped in local minima, and has the advantage of being

parameter free. We adopt a two layer spiking neural network

architecture in this paper, with n= 184 input neurons and a

single output neuron per type of gait event (Fig. 4). The

input neurons are essentially the Izhikevich spike conversion

neurons used in the previous step. We note that in the original

paper [18], the authors advocate the use of an additional

hidden layer with random kernels and weights to increase

the dimensionality of the signal. Our experience with the

gait data showed little improvement when the hidden layer

is used, and hence we decided to omit it for simplicity.

Before feeding the spikes to the perceptron, a conversion

to continuous values is required. We used an alpha kernel:

αn(t) =
∑
tn≤t

t− tn
τ

exp

(
− t− tn

τ

)
(1)

Where tn are the input spike times, and τ is the time constant

of the synapse. The time constant affects the persistence of

each input spike, as it determines the length of time which

past spikes are still represented since its occurrence. We used

τ = 20ms in this paper. The use of the alpha kernel was

simply a matter of choice, and as shown in [18], other kernels

are equally applicable.

Since the kernel is static, it is possible to formulate the

system as a set of linear equations:
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Fig. 4: Event detection using perceptron with weights obtained through
SKIM

AW = Y

⎛
⎜⎜⎜⎝
α1(1) α2(1) · · · αn(1)
α1(2) α2(2) · · · αn(2)

...
...

. . .
...

α1(t) α2(t) · · · αn(t)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
w1

w2

...

wn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
y1
y2
...

yt

⎞
⎟⎟⎟⎠ (2)

where:

Y ∈ {0, 1}
The matrix Y is the reference signal, consisting of binary

values that represent a spike or non-spike at each discrete

point in time. The weights can then be obtained analytically

by taking the Moore-Penrose pseudoinverse:

W = A+Y (3)

D. Reference signal

The SKIM method requires that a reference signal be

present in order to solve for the weights. In this paper,

the reference signal was obtained using a force pressure

plate (AMTI OR6-7-1000, Watertown, USA). Only the ver-

tical component of the ground reaction force was used. A

threshold of 5 N on the rising edge was used to detect the

heel strike (HS) event, while the toe off (TO) event was

detected on the falling edge at the same threshold (Fig. 5).

Thresholds of 2.5 − 20N [9], [22]–[24] have been used in

various other literature, with lower thresholds giving a closer

approximation to the actual event.

The SKIM method tends to suffer from class imbalance

when the reference spikes are sparse. This was mitigated by

increasing the reference spike width, as recommended by

[18]. A spike width of 20 ms (±10ms from reference) was

used in this work (Fig. 6).

III. EXPERIMENT

One healthy subject was recruited for this study, and was

instructed to perform 90 valid walks on a 10 m track at

a self-selected pace. The force pressure plate was placed

in the middle of the track, and the right foot has to land

fully within the force pressure plate to be considered a valid
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trial. One insole sensor was embedded in the right shoe

of the subject. Both systems were hardware synchronized

and sampled at 1000 Hz. A Matlab routine was used to

automatically segment the force pressure plate and insole

data offline into individual steps starting 300 ms before HS

and ending 300 ms after TO.

Two output perceptrons were used to detect gait events

corresponding to HS and TO respectively. Cross validation

was performed by training the perceptrons with 30 steps

and validating them on the other 60 steps. The trials were

repeated thrice to ensure all steps were used for both training

and testing. As the perceptrons are not inherently spiking,

further processing was performed to obtain the exact time-

point of a detected event. Binary data after threshold was first

clustered into groups, with ones that are less than 50 ms apart

treated as a continuous positive output. The time of detection

was then taken to be the start of each group (Fig. 6).
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Fig. 7: Accuracy of gait event detection, with sensor threshold θi = 0.4V .
The upper plot indicates the mean and standard deviation of event detection,
referenced against a forceplate sensor. The lower plot shows mean and
standard error (across 3 cross validation runs) of detection error.

A. Error metric

The algorithm was evaluated by a) number of false

positives, b) number of false negatives, and c) temporal

deviation of detected events from the reference system. A

false positive is defined by an output spike that is not within

100 ms of a reference signal, while a false negative is the

failure to emit a spike within 100 ms of a reference signal.

Both false positive and false negatives were normalized

against the number of steps taken in the test dataset.

B. Results

Fig. 7 shows the results of the experiment. Gait events

were detected with a mean and standard deviation of

1.6± 7 ms and 1.0± 15 ms earlier than the force pressure

plate for HS and TO respectively. Detection of HS was

more temporally precise as compared to the TO event.

Nevertheless, most events were detected within 20 ms of the

reference system, which is comparable to other instrumented

insoles [10], [25].

The percentage of false positives/negatives remained be-

low 2% on average (Fig. 7). Notably, all HS events were

reliably detected. Based on visual observation, this was due

to the high repeatability of spike patterns created during HS.

In addition, we evaluated the sensitivity of our approach

to the input threshold used. Thresholds of 0.3 ≤ θi ≤ 0.7V

(in steps of 0.1 V) were used for conversion of analog to

binary signals. The chosen range represents a region where

most values fluctuate (Fig. 5).

Comparing the performance across various input thresh-

olds, it is apparent that the temporal accuracy was not

significantly affected by the choice of input threshold (Fig. 8

and 9). The average temporal accuracy remained within 2 ms

of the reference signal, and this was consistent for all trials.

Average detection error was below 3% for TO regardless

of input threshold, while all HS events were successfully

detected. There is no obvious trend as to how classification

error might be influenced by the choice of input threshold.
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IV. DISCUSSION

A major bottleneck to large pressure sensing arrays is the

low sampling rate and large readout bandwidth required.

These requirements are made more stringent on portable

wireless platforms, where power, computation and communi-

cation resources are further constrained. This is especially so

for detecting gait events, where a fully embedded, wireless

and low cost system remains elusive. While the performance

of micro-processors will no doubt increase in the future, it

is also prudent to explore alternative computation methods.

In this paper, we have demonstrated how gait event de-

tection could be achieved using temporal information alone.

Through binary sampling, lower bandwidth requirements and

higher sampling rates could be achieved without compromis-

ing power consumption, should dedicated comparator circuits

be used. The use of a fixed pressure threshold may appear

to lack robustness, since it is possible for the readout to be

saturated throughout the entire gait cycle. Nevertheless, we

have shown that the approach works on a range of threshold

values, as long as spikes generated are of sufficiently high

dimension. It is also possible to derive automated ways of

choosing a threshold. The learning process is potentially

robust against unnatural gait, as it is data driven and relies

only on the accuracy of the reference system. This approach

would be especially suited to applications where a low-cost

gait detection function is desired.

We are aware that this approach would not satisfy all

clinical applications, as it provides only temporal information

on when gait events occur. In addition, its performance is

also highly reliant on the quality and variety of training

data available, which is difficult to obtain in the first place.

Moreover, being primarily data driven, the temporal features

have little meaning on their own.

Nevertheless, the ability to detect gait events accurately

would already be useful in a variety of applications, from

gait segmentation to assistive prosthetics. Interestingly, the

algorithm is not constrained to the detection of specific gait

events, but could be trained to respond to any consistent point

of a gait cycle. This may be advantageous to applications

such as FES, since FES stimulation protocols are often a

function of muscle latency, i.e. the delay between muscle

stimulation and production of muscle force [26]. Hence,

the optimum time for stimulation may be arbitrary, and not

corresponding to any specific gait event. The algorithm could

thus be trained to respond at the optimum time, in very much

the same way as it is for a gait event.

We note that the design of the experiment is highly

simplified, and more tests, including subjects with pathologic

gait should be carried out for further verification. The ap-

proach should also be validated for walking across multiple

terrains. In addition, robustness to false positives during

weight shifting, a common problem for instrumented insoles,

should be quantified.

A natural progression would involve packaging the setup

into a self-contained embedded system, where the advantages

of our sampling approach would be more obvious. Such a

system would be applicable to a multitude of uses, from

personalized long term monitoring in gait rehabilitation to

exoskeleton integration.

The exact representation of sensory information in the

brain is ill understood. However, the fact that asynchronous

spikes are used instead of continuous signals clues us to

explore the use of temporal information to encode stimuli.

More importantly, it has been shown that multiple sets of

information can be multiplexed within the same population

of axons across different time scales [27], suggesting that

more efficient communication protocols exist through spike

representation. Such a neuromorphic approach might bring

us a step closer to the ultimate goal of sensory integration

with real biological neurons.

V. CONCLUSION

A gait event detection approach, based purely on temporal

properties of pressure signals have been presented. The

approach has been demonstrated on a real-life application,
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using a simple fabric based insole pressure sensor. Despite

having only 1-bit of information per channel, our approach

demonstrates absolute mean temporal accuracy below 2 ms

the reference system, while detection errors are below 3%

in most trials. The approach also has very low bandwidth

requirements, and is thus suited for embedded applications.
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