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Abstract— The synaptic input to the motoneurons cannot
be measured in humans due to ethical and technical diffi-
culties. For these reasons realistic computational models of a
motoneuron pool and the innervated muscle fibers (a “motor
unit pool”) have an important role in the study of the human
control of muscles. However such models are complex and their
mathematical analysis is difficult. We present a system identi-
fication approach of a realistic motor unit pool model with the
objective of obtaining a simpler model capable of representing
the transduction of the motoneuron pool inputs into the force
generated by the respective muscle. The system identification
was based on an orthogonal least squares algorithm to find a
NARMAX model, the input being the net dendritic excitatory
synaptic conductance of the motoneurons and the output being
the force produced by the muscle. The identified model output
reproduced the mean behavior of the output from the realistic
computational model even for input-output signals not used in
the identification process, such as sinusoidally modulated output
force signals.

I. INTRODUCTION

The motor units are transducers of the premotoneuronal

input into force [1]. As the synaptic input to the motoneurons

(MN) cannot be directly measured in humans, due to both

technical and ethical issues, the usage of computational mod-

els to estimate the relationship between synaptic currents and

muscle force becomes very important [2]. Recently, some

realistic neuromuskuloskeletal computational models capable

of simulating motor behaviors have been developed [3]–[5].

Although these models achieved great success in reproducing

and explaining some motor behaviors and the transduction

of the premotoneuronal input into force, they are usually so

complex that performing any mathematical analysis would be

very difficult and the ability of generalization is practically

inexistent.

This high complexity of the system motivates the use of

system identification techniques as a means of achieving

model complexity reduction. System identification consists

of a set of methods to find a mathematical description

of a system based solely on its observed inputs and out-

puts [6]. Although experimental input-output data are not

available, the necessary data can be obtained using a realistic

computational model. In this work the adopted realistic

neuromusculoskeletal model was that described and validated

in [4], [7], [8] for the Triceps Surae (TS).
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Therefore, the objective of this work was to find a dynamic

model simpler than those complex biologically-realistic mod-

els mentioned above, that could reproduce the transduction

of the MNs’ synaptic inputs into the force signal with the

same characteristics of the realistic models.

The paper is organized as follows: Section II describes the

neuromusculosketal model and the simulation protocol used

for the data acquisition to the identification of the model. The

system identification method used is explained afterwards.

Finally the validation methods of the identified model is

explained. Section III shows the identified model and its

validation. Section IV discusses the validity of the motor

unit pool identified model and its possible uses.

II. METHODS

A. Neuromusculoskeletal model

A previously reported model [4], [7], [8], hereafter referred

to as the original model, was used as the neuromusculoskele-

tal model for the acquisition of the premotoneuronal inputs

and the force signals. Briefly, each MN pool of the TS – for

the Soleus (SOL), Medial Gastrocnemius (MG) and Lateral

Gastrocnemius (LG) – encompasses conductance-based MN

models arranged according to the available physiological and

anatomical data (all the parameter values were the same used

in [8]). The main difference between each MN pool is its

number of MNs: SOL has 900 , MG has 600 and LG has

260. Each spike generated by a MN produces a twitch in the

muscle unit following the impulse response of a second-order

critically-damped system [4], [9]. Descending axons were

represented by 400 independent renewal point processes.

A 30% connectivity was adopted between the descending

axons and MNs, i.e. each descending axon connects to

approximately 30% of the MNs randomly [8] to account for

the inter-subject variability. For each performed simulation

the contacts of the descending axons with the MNs is

randomized. A diagram of the neuromusculoskeletal model

is depicted in Fig. 1.

B. Data acquisition

Differential equations describing the neuromusculoskeletal

model were solved by a fixed-step (0.05 ms) fourth-order

Runge-Kutta integration method. Ten statistically indepen-

dent simulations using the neuromusculoskeletal model de-

scribed in the previous section were performed to simulate

isometric contractions equivalent to 10% maximal voluntary

contraction. Each descending axon conducted a spike-train

modeled as a Poisson point process with a mean inter spike
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Fig. 1. Structure of the neuromuscular model used in this study. (a) schematic view of the Triceps Surae (TS) muscle group and the three TS muscles:
Soleus (SOL), Medial Gastrocnemius (MG) and Lateral Gastrocnemius (LG). The motor unit pool of each muscle encompasses motoneurons (MN) and
the respective muscle units (MU); (b) schematic representation of muscle-specific motor units (MNs and MUs). Each of the 400 renewal point processes
representing the descending axons connects to approximately 30% of the MNs. Each MU receives a train of action potentials from the respective MN
and generates twitches that are summed with the contributions from the other MUs to produce the muscle force F(t). (c) train of renewal point-process
representing a train of spikes of a descending axon; (d) equivalent circuit used to represent each MN model. gsyn1

to gsynM
:synaptic conductances for synapse

1 to M, respectively; gc: coupling conductance; gLd and gLs: dendritic and somatic leakage conductances, respectively; gNa, gK f and gKs: conductances
of Na+, fast K+ and slow K+, respectively; EL: leakage Nernst potential; ENa: and EK : Na+ and K+ equilibrium potentials, respectively; Esyn1

to EsynM
:

reversal potentials for synapses 1 to M, respectively; Cs and CD: somatic and dendritic capacitances, respectively; VS and VD: somatic and dendritic
membrane potentials, respectively. (e) force produced by a single MU.

interval (ISI) equal to 11.2 ms, as in [8]. Each simulation

had an equivalent duration of 15 s.

Four additional simulations were performed for the pur-

pose of evaluating the performance of the identified model

during a sinusoidal modulation of the ISIs of the descending

axons point processes. The modulation of the point processes

produced a simulated rhythmic voluntary contraction. In

these simulations, the ISIs mean of the point processes varied

sinusoidally with mean of 11.2 ms, amplitude of 0.5 ms (i.e.

ISIs varying from 10.7 ms to 11.7 ms) and frequencies of

0.5 Hz, 1 Hz, 2 Hz and 3 Hz.

C. System identification

The type of model used in the motor unit pool identifi-

cation was the polynomial representation of the nonlinear

autoregressive moving average with exogenous input (NAR-

MAX) model [10]:

y(k) = θ0 +
n

∑
i1=1

θi1xi1(k)+
n

∑
i1=1

n

∑
i2=i1

θi1i2 xi1(k)xi2(k)+

. . .+
n

∑
i1=1

. . .

n

∑
il=il−1

θi1i2...il xi1 xi2 . . .xil +ξ (k)

(1)

where θi1i2...im are the respective model coefficients and

xm(k) =







u(k−m) 16m6mu

y(k−(m−mu)) mu+16m6mu+my

ξ (k−(m−mu−my)) mu+my+16m6mu+my+mξ

(2)

with mu,my and mξ being the maximal lags for, respec-

tively, u, y and ξ . ξ (k) is computed by using:

ξ (k) = y(k)− ŷ(k|k−1) (3)

The signal chosen as the input signal u(t) in the identi-

fication of the motor unit pool system should contain the

ensemble information of the activations from all the presy-

naptic inputs. The most natural choice to be used as the input

signal is the net dendritic excitatory synaptic conductance of
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the MNs. As the connectivity between the descending axons

and the MNs is approximately 30% (see Fig. 1), each MN

receives a different combination (mean 120) out of the 400

independent input Poisson spike trains. As each conductance

is generated by the same linear system dynamics and the

overall input is composed by the 400 sample functions of

the same Poisson point process (i.e., with a pre-established

parameter value), we adopted as an overall input signal for

the identification process a conductance which is activated by

all the 400 Poisson spike trains. This is equivalent to measure

the conductance signal from a MN as the connectivity were

100%. The choice of this signal as the input guarantees that

the signal u(t) contains the information from all presynaptic

inputs of all MNs.

The choice of Poisson point processes models for the spike

trains in the descending axons facilitates the identification

process because the power spectrum of the net dendritic

excitatory synaptic conductance is flat until 100 Hz [8].

The force F(t) (see Fig. 1) was chosen as the output

signal y(t). Fig. 2 shows an example of the input signal

u(t) (Fig. 2(a)) and the corresponding output signal y(t)
(Fig. 2(b)).
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Fig. 2. Examples of (a) input signal u; (b) output signal y

The model identification of the motor unit pool was

performed using the NARMAX technique of system identi-

fication based on the multiple forward regression orthogonal

least squares algorithm (MFROLS) using the error reduc-

tion ratio (ERR) to select the model terms (see page 81

in [10]). This technique was chosen because the structure

that the identified model should have was not known a

priori. While most of the identification techniques require

previous knowledge of the model structure [11], [12], the

MFROLS algorithm conducts an exhaustive search in a set

of candidate terms and selects the most important terms of

this set according to the ERR [10].

Given the above, five of the ten input/output pairs obtained

in the simulations (see Section II-B) were used to identify

a model by using the MFROLS algorithm. The original

data set was first low-pass filtered by an eighth-order low-

pass Chebyshev zero-phase filter with a cutoff frequency of

160 Hz and then downsampled to 400 Hz. This sampling

frequency was chosen based on the autocorrelation of the

squared output criterion explained in [13]. The set of can-

didate terms was built with all possible combinations of the

signals u and y with the maximal order of a polynomial

term in Eq. (1) being seven (l = 7). By using the sum of the

error reduction error criterion [10], the values of mu = 10

and my = 4 were obtained. After the selection of the model

terms, the values of the coefficients θi1i2...im were found by

using least squares.

The estimation of the values of θi1i2...im previously found

are biased since it is necessary to identify a model of

the residue of the estimation [6]. Therefore, the MFROLS

algorithm is used once again to find a model for the signal

ξ (k), computed as in Eq. (3). In this phase of the system

identification all combinations of u(t), y(t) and ξ (t) up to

the seventh order polynomial (l = 7) were used as the set of

candidate terms to model the signal ξ and the value mξ = 10

was adopted.

After the selection of all the model terms (including the

residue model) it was necessary to reestimate the values of

θi1i2...im . This was performed by using the extended least

squares algorithm of parameter estimation [10].

D. Model validation

The estimation of the values of θi1i2...im will be unbiased

only if the residue ξ is uncorrelated from the selected model

terms. It has been shown [14] that ξ will be uncorrelated

from the selected model terms if the following correlation

tests are obeyed:

Φξ ξ (k) =δ (k),∀k

Φuξ (k) =0,∀k

Φξ (ξ u)(k) =0,k > 0

(4)

where Φwz is the normalized cross-correlation between

w and z, δ (k) is the unitary impulse (assumes the

value of 1 when k = 0 and the value 0 otherwise) and

(ξ u)(k) = ξ (k+1)u(k+1).
The five simulation signal pairs that were not used dur-

ing the identification procedure, were used to evaluate the

identified model output. The predicted output signals were

obtained during a completely free simulation of the identified

system, i.e. the output y(t) from the original model was not

used during the prediction. To compute the contribution to

y(t) of the terms that depend on past values of y(t), the

values of the estimated output ŷ(t) were used instead.

Since the identified system has a stochastic nature (mainly

due to the random connections of the descending axons with

the MNs), the comparison between the output signals from

the original model and from the identified models was done

by means of a frequency domain analysis. For this purpose

the power spectra of both output signals and the cross-spectra

between the input and the output signals from both models

were computed. To evaluate the spectra only when a steady

state was reached, the spectra were computed using the last

12 s of each of the five signals using Welch’s method [15].

The spectra and cross-spectra from both the original and the

identified model were estimated by averaging the values from

each of the five trials. To test the similarity of the curves

from both models, the following statistic having a chi-square

distribution was used [15]:
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X2 =

(

1

ndorig

+
1

ndident

)−1
n

∑
i=1

[

log10

(

∣

∣Ŝorig( fi)
∣

∣

∣

∣Ŝident( fi)
∣

∣

)]2

(5)

where Ŝ is spectra or cross-spectra estimation, nd is the

number of averages used for each estimation using the

Welch’s method, and the subscripts orig and ident are used

to the original and the identified models, respectively.

III. RESULTS

The model terms selected by using the MFROLS algo-

rithm [10] are shown in Table I. The same table shows the

final values of the respective θi1i2...im coefficients of the three

motor unit pools of the TS.

TABLE I

SELECTED MODEL TERMS AND FINAL VALUES OF THE θi1i2 ...im

COEFFICIENTS

Model term SOL MG LG

y(k-1) 2.08e+00 2.06e+00 1.86e+00

y(k-2) -1.22e+00 -1.28e+00 -8.85e-01

y(k-3) 1.87e-01 3.41e-01 1.55e-01

y(k-4) -4.56e-02 -1.21e-01 -1.29e-01

u(k-6) -1.31e-04 -1.31e-04 7.97e-05

u(k-7) 1.68e-06 -5.92e-05 -2.70e-05

u(k-8) 2.77e-04 1.37e-04 1.07e-04

u(k-9) 6.60e-05 3.77e-05 -6.23e-06

u(k-10) 3.17e-06 6.97e-06 9.44e-06

u(k-6)u(k-6)u(k-7) -8.82e-11 9.60e-11 -2.05e-10

u(k-6)u(k-7)u(k-8) -2.15e-09 -9.87e-10 -5.38e-10

u(k-6)u(k-7)u(k-7) 1.45e-10 2.80e-10 -1.71e-10

u(k-6)u(k-7)u(k-7)y(k-1) -7.95e-13 -4.14e-12 1.19e-11

u(k-7)u(k-7)u(k-7)u(k-8)u(k-9) 2.57e-16 1.41e-16 8.21e-17

u(k-8)u(k-8)u(k-8)u(k-9)u(k-9) -1.57e-16 -6.59e-17 -8.16e-18

u(k-6)u(k-6)u(k-7)u(k-7)u(k-8) 4.60e-15 1.75e-15 1.31e-15

u(k-6)u(k-7)u(k-7)u(k-8)y(k-1) -2.92e-13 1.49e-14 7.86e-13

u(k-6)u(k-7)u(k-7)u(k-8)y(k-3) -2.23e-13 1.12e-13 8.68e-13

u(k-6)u(k-7)u(k-7)u(k-8)y(k-2) 5.14e-13 -1.28e-13 -1.66e-12

u(k-6)u(k-8)u(k-8)u(k-8)y(k-3) 4.40e-16 1.12e-15 3.39e-16

u(k-6)u(k-6)u(k-7)u(k-7)u(k-7)y(k-1) 1.19e-15 7.93e-16 4.08e-16

u(k-6)u(k-6)u(k-7)u(k-7)u(k-7)y(k-2) -2.38e-15 -1.56e-15 -8.41e-16

u(k-6)u(k-6)u(k-7)u(k-7)u(k-7)y(k-3) 1.19e-15 7.71e-16 4.24e-16

u(k-6)u(k-6)u(k-6)u(k-7)u(k-7)u(k-7)u(k-8) -1.54e-21 -6.11e-22 -2.11e-22

u(k-6)u(k-6)u(k-6)u(k-6)u(k-6)u(k-7)u(k-8) 1.05e-21 7.55e-22 2.90e-22

u(k-6)u(k-6)u(k-6)u(k-7)u(k-7)u(k-8)u(k-8) -1.41e-21 -6.98e-22 -4.90e-22

u(k-6)u(k-6)u(k-6)u(k-6)u(k-7)u(k-7)u(k-7) -3.91e-22 -3.40e-22 6.48e-23

u(k-6)u(k-6)u(k-6)u(k-6)u(k-6)u(k-6)y(k-1) -3.88e-22 -1.82e-21 -1.76e-21

Fig. 3 shows the results of the cross-correlation tests of

Eq. (4) computing ξ (Eq. (3)) from the estimation of the

output of the identified model (Table I) to one input/output

pair used in the identification process (Fig. 3(a) shows Φξ ξ ,

Fig. 3(b) shows Φuξ and Fig. 3(c) shows Φξ (ξ u)). The three

figures show that all values that should be zero are inside

the 95% confidence interval.

The results in Fig. 4 and Fig. 5 were computed using

the five simulation signals not used during the identification

process. Only the results from SOL pool are shown. The

results from the other pools are similar.

Fig. 4 shows the output signal of the original model

and the output signal of the identified model, using the

same signal u(t) as input. It is worth noting that, since the

motoneuron pool is a stochastic system, it is not expected

that both signals should have exactly the same time course.

Fig. 5 shows the results of the frequency domain analysis.

Fig. 5(a) shows the power spectra of the output signals from
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Fig. 3. Correlation tests (a) Φξ ξ ; (b) Φuξ ; (c) Φξ (ξ u). The dashed blue
lines indicate the 95% confidence interval.
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Fig. 4. Output example of the original model (blue line) and the identified
model (red line). Only the last 12 seconds are shown.

the original model and from the identified model. Fig. 5(b)

shows the cross-spectra between the input signal and the

output signals from the original model and from the identified

model. By using the statistics in Eq. (5) to test the similarity

of the power spectra and cross-spectra from the original and

identified model, the hypothesis that the curves are equal

between 0 and 10 Hz is accepted with a significance level

of 0.05.

Fig. 6 shows the output signals corresponding to the input

signals (descending axons’ point processes) being produced

with ISIs modulated sinusoidally (see Section II-B). Four

modulation frequencies were used: 0.5 Hz (Fig. 6(a)), 1 Hz

(Fig. 6(b)), 2 Hz (Fig. 6(c)) and 3 Hz (Fig. 6(d)). Mean
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Fig. 5. (a) Power spectra of the output signals. (b) Cross-spectra between
the input signal and the output signals of the original model and the
identified model.

square error measures present no difference for the different

modulation frequencies.
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Fig. 6. Output force sinusoidally modulated with frequencies of (a) 0.5 Hz,
(b) 1 Hz, (c) 2 Hz, (d) 3 Hz. Only 5 s are shown.

IV. DISCUSSION

In this paper we identified a model that has as input a

signal originated from all the premotoneuronal inputs and

its output is the force produced by the muscle. Both input

and output signals used in the identification process were

acquired from a realistic neuromusculoskeletal model of the

TS muscles.

The output signal from the identified model (see Fig. 4)

has the same mean and approximately the same time course

as the output signal from the original model. As mentioned

before, since the original system (the complex biologically

realistic model) has a stochastic behavior the two output

signals need not have exactly the same time course. The

origins of the stochastic behavior of the original system

are mainly due to: for each simulation there are small

random variations around the means of the original model

parameters; the random connectivity (30%) from the input

spike trains to the motor unit pool each time a simulation is

performed.

This random connection of the descending axons imposes

difficulties in the system identification of the motor unit pool.

That was the reason to use five signal pairs from different

simulations to perform the identification of the pool. The

use of five signal pairs tries to capture the mean behavior

of the motor unit pool, which can be assessed by means of

a spectral analysis. The power spectra and the cross-spectra

from both the original and the identified model (see Fig. 5)

have similar values at all frequencies, suggesting that the

dynamical behaviors from both models are similar.

Probably some of the terms found in the identification pro-

cess (see Table I) are spurious and could be removed from the

model. This is a known issue of the MFROLS algorithm [10]

and requires an extra analysis to find the spurious model

terms. Besides the existence of spurious terms, some tests

other than that shown in Fig. 3 can indicate the necessity

of some additional term to represent a particular dynamical

behavior. The small deviation of the output power spectra

(see Fig. 5(a)) around 1 Hz also indicates the possibility that

there may be some missing terms.

Nevertheless, the dynamic model found in this work was

able to replicate force signals having different characteristics

from those used during the identification process. The force

curves from the identified model shown in Fig. 6, simulating

voluntary rhythmic contractions (produced by a sinusoidal

modulation imposed to the descending axons), common in

multiple daily tasks as postural control or gait, have the same

frequency as the force curves of the original model. The dif-

ferences between the signals generated by both models are,

as noted before, due to the stochastic nature of the involved

systems and their magnitudes have no statistic differences

for the different modulation frequencies. Regardless of the

signal differences, the force signal from the identified model

follows the frequency of the force signal from the original

model in all the four cases.

Besides the mathematical simplicity, when compared to

the original model, the identified model has the advantage to

produce the force signal significantly faster than the original

model. For example, to produce the force signal from Fig. 4

the realistic neuromusculoskeletal model takes around 40

minutes (using an Intel R© 3.4 GHz processor and 24 Gb

RAM memory). The identified model produced the force

signal generated by the same input signal (Fig. 4) in less

than 5 s, using the same processor and memory. Indeed, the

original realistic model, focusing only on the SOL pool, is

composed of 900 MNs, each having: fast and slow, sodium

and potassium, ionic channels; a one-compartment dendrite

modeled by an RC circuit and as many synaptically-activated

conductances (with exponential time courses) in parallel at

the dendrite as the number of presynaptic inputs. Each of

the 900 motor units activates a second order linear model to

produce a force twitch. In comparison, the identified model

is a difference equation with only 28 model terms.

The output of the identified model can be used as the

activation signal of a Hill-type muscle model [16] and be
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coupled to proprioceptors sending input signals to the MNs,

as in the original neuromusculoskeletal model in [17], [18].

This coupling would allow the study of physiological ques-

tions that would be difficult to tackle either by experiments

or using the realistic neuromusculoskeletal model.

Besides the study of neurophysiological questions, a sys-

tem like that described in the last paragraph could be used

to control a robotic leg. A much studied approach for human

leg rehabilitation has been the interface between muscle

EMG and robotic legs [1], [19], [20]. A more advanced

approach, that would require either EEG signals or some

more invasive signal acquisitions, could benefit from the

identified system developed here. Its output would serve

as the activation signal for Hill-type muscle models which

would serve as model for the robotic dynamics. Additionally,

the proprioceptor models would produce realistic reflexes

in the robotic leg. This system could be used not only

in amputees but also in subjects with spinal cord injury.

Clearly, this is just a conceptual proposal, much science

and technology still need to be created to realize such an

approach.

In sum, the preceding results show that the identified

model of the motor unit pool can transduce the MNs inputs

into a force signal with the same dynamic characteristics as

the generated by the realistic neuromusculosketal model.
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