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Abstract— This paper presents a cognitive architecture for a 

camera robotic assistant aimed at providing the proper 

camera view of the operating area in an autonomous way. 

The robotic system is composed of a miniature camera robot 

and an external robotic arm. The camera robot is introduced 

into the abdominal cavity and handled by the external robot 

through magnetic interaction. The cognitive architecture is 

provided with a long-term memory, which stores surgical 

knowledge, behaviors of the camera and learning 

mechanisms, and a short-term memory that recognizes the 

actual state of the task and triggers the corresponding 

camera behavior. To provide the proper camera view, each 

state of the task is characterized by a Focus of Attention 

(FOA), defined by an object, a position of the object in the 

image, and a zoom factor. The architecture also includes a 

learning mechanism to take into account particular 

preferences of surgeons concerning the viewpoint of the 

scene. The architecture proposed is validated through a set 

of in-vitro experiments.   

I. INTRODUCTION 

In the last decades, Minimally Invasive Surgery (MIS) 
has become a widely accepted technique as an alternative to 
traditional open surgery procedures. In this field, robotic 
assistants have found a wide range of applications, from 
surgeon extenders to auxiliary surgical supports [1]. Surgeon 
extenders, which main reference worldwide is the da Vinci 
Surgical System [2], are operated directly by the surgeon. 
Although these devices enhance surgeons’ abilities in terms 
of accuracy, accessibility and dexterity, they require long 
training periods and challenge surgical tasks remain tedious 
and time consuming. On the other hand, auxiliary surgical 
supports devices work side-by-side with the surgeon and 
perform functions such as holding the endoscope or 
retraction. Traditionally, these devices use direct control 
interfaces, such as head-trackers [3], eye-trackers [4]-[5], or 
voice-activated control [6]. However, although these methods 
have succeeded in substituting medical stuff, they introduce 
extraneous devices that distract the surgeon from the 
important surgical tasks. Therefore, it is in this field where 
there is still much to be done to provide robotic assistants 
with capabilities to interact with surgeons in a similar way as 
a human assistant would do.  

An ideal robotic assistant should combine human and 
robot capabilities under the co-worker concept [7], i.e., the 
robot should collaborate with surgeons in a natural and 
autonomous way, thus requiring less of the surgeons’ 
attention. A robotic co-worker needs human interaction, 
perceptual and actuation systems to interact with the 
environment, and learning mechanisms. Combining these 
characteristics into a cognitive architecture would provide a 
robotic assistant with the capability of collaborating 

 
 

autonomously with surgeons during a particular task, either 
performing preprogrammed basic actions or controlling the 
endoscope. A natural human-robot communication is based 
on emulating how humans communicate among each other, 
basically, voice commands or by gestures. Jacob et al. [8] 
have combined these two interfaces in a robotic scrub nurse 
that assists the surgeon by passing surgical instruments. The 
intelligence of the robot is based on a finite-state machine 
that evolves depending on the input received from the 
surgeon. However, collaboration during surgical procedures 
is a more complex scenario and requires providing the robot 
with surgical knowledge to be able to identify the actual state 
of the task to act on this recognition. In this sense, Padoy et 
al. [9] have proposed a collaborative system for suturing 
based on recognizing the actions performed by the surgeon 
through Hidden Markov Models, and triggering previously 
learned motions. Bauzano et al. [10] propose a similar 
approach but for a Hand Assisted Laparocopic Surgery 
scenario. 

Similar approaches based on tasks workflow analysis 
have been addressed for automating the motion of the 
endoscope. Ko et al. [11] propose an intelligent interaction 
architecture that suggests the proper camera view depending 
on the current surgical state. Surgical knowledge is built 
assuming a state-transition diagram, where transition 
conditions depend only on the surgical tool in use. Weede et 
al. [12] enhance the decision capability of the robot by long-
term prediction of the surgical instruments motion. This 
method is based on building a knowledge base of the position 
of the instruments for a particular procedure from recordings 
of former interventions. Using Markov chains, the system 
predicts the area where the surgical tools are going to move. 
The ideal field of view should include all predicted points 
and both tools’ tips. Although both previous works represent 
a cognitive solution for the positioning of the endoscope, 
none of them include online learning algorithms to improve 
the behavior of the robotic assistant.  

In this work, we propose a cognitive architecture for a 
camera robotic assistant aimed at providing the proper 
camera view of the scene for each state of the surgical task. 
Unlike previous work, this architecture includes a learning 
mechanism to improve the behavior of the robot. Long-term 
memory is divided into procedural, semantic and episodic 
memory, where different classes of knowledge are stored, 
while short-term memory represents the inference engine of 
the system. Besides instrument tracking, camera view is 
improved by using the Focus of Attention (FOA) of the 
current state of the task. We validate this approach on a 
suturing task. This paper is organized as follows. The camera 
robotic system is described in section II. Section III illustrates 
the cognitive architecture, including a detailed description of 
all its modules. Experimental results are reported in section 
IV, and conclusions are discussed in section V.  

Towards a Cognitive Camera Robotic Assistant  

I. Rivas-Blanco, B. Estebanez, M. Cuevas-Rodriguez, E. Bauzano, and V.F. Muñoz, Member, IEEE 

2014 5th IEEE RAS & EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob)
August 12-15, 2014. São Paulo, Brazil

978-1-4799-3127-9/6/14/$31.00 ©2014 IEEE 739



  

II. CAMERA ROBOTIC SYSTEM  

The camera robotic system used in this work is composed 
of a miniature camera robot handled by an external robotic 
arm. The camera robot, provided with a set of magnets, is 
introduced into the abdominal cavity through an entry port 
(by which the surgical tools are inserted), and attached at the 
abdominal wall through magnetic interaction. To this aim, a 
magnetic holder is attached at the end effector of the external 
robot. Thus, motion of the camera robot is controlled by 
translating the external robot along the abdominal wall. 
Advantages of this system versus a conventional laparoscope 
are that motion of the camera is not restricted by the entry 
port, so more camera views of the abdominal cavity can be 
obtained, and the incision for the laparoscope is avoided. 
Moreover, automatic guidance of the camera can be 
performed by automating the motion of the external robot. 
Tracking of the surgical tools is performed by an optical 3D 
tracker by means of reflective markers attached at the tools. 
An overview of the complete system is shown in Fig. 1, 
along with the references frames of the different components 
of the system.  Additionally, a detail of the camera robot 
prototype is depicted. Camera robot size is 30 x 22 x 90 mm, 
and it is composed of a High Definition camera (Logitech 
HD Webcam C310), fourteen white LEDs to illuminate the 
operating area, and two permanent magnets at the bottom.  

 

Figure 1. Robotic system overview 

III. THE COGNITIVE ARCHITECTURE 

As mentioned in section I, an ideal robotic assistant 
should combine human and robot capabilities to provide 
surgeons the proper camera view of the operating area 
without disrupting their concentration on the surgical 
procedure. Human assistants capabilities are mainly based on 
their surgical background and their learning abilities. Surgical 
background provides knowledge of the surgical workflow to 
be able to identify the actual state of the task and to know 
where the FOA is, while learning abilities allow them to learn 
particular preferences of surgeons in order to improve their 
behavior. Therefore, an intelligent robotic assistant should 
include these human capabilities. Cognitive architectures 
specify the underlying infrastructure for an intelligent system. 
As stated by Langley [13], a cognitive architecture should 

include: short-term and long-term memories to store 
information about the system beliefs, goals and knowledge, 
representations of elements contained in the memory 
organized into mental structures, and functional processes 
that operate on these structures and learning mechanisms.  

 

Figure 2. Cognitive Architecture 

Fig. 2 shows the cognitive architecture proposed in this 
work, which is aimed at controlling the camera robot in an 
intelligent way to provide the surgeon the proper camera 
view during a particular procedure. Long-term memory stores 
scenario and surgical knowledge (semantic memory), learned 
behaviors of the camera (procedural memory) and 
experiences of users over time (episodic memory). Surgical 
state estimation is performed in the short-term memory, 
using the actual state of the environment provided by the 
perceptual system and the surgical knowledge. Depending on 
the actual state of the task, the FOA generator triggers the 
corresponding camera behavior, which changes the camera 
view of the patient’s abdominal cavity through the camera 
motion module. Finally, the surgeon interacts with the system 
through an appropriate Human-Machine Interface (HMI), 
which lets the user to adjust the camera view according to 
his/her preferences. Next, each module of the cognitive 
architecture depicted in Fig. 2 is described in detail.  

A.  Long-term memory 

Long-term memory is broken down into procedural 
memory, semantic memory and episodic memory [14]. 
Firstly, semantic memory contains declarative facts that the 
system “knows” and it is essential for reasoning and 
deciding autonomously. It contains the surgical knowledge 
the system needs to identify the actual state of the task, as 
well as surgical scenario knowledge. Thus, semantic 
memory is divided into two classes of knowledge: scenario 
and surgical knowledge. This knowledge division allows the 
system to organize the memory into different mental 
structures. The scenario knowledge contains static 
information of the different objects of the surgical scenario. 
This information is required to classify the objects and to 
establish the relations between them. Therefore, each object 
of the scenario knowledge is defined as a data structure, 
which first field is the object’s class. In this work we have 
considered four object’s classes: camera (O1), sensor (O2), 
surgical tool (O3), and image (O4). Objects definition is as 
follows:  
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Figure   3. Image parameters 

 

- O1 = {camera, 
n
Tc} 

- O2 = {sensor, 
0
Ts} 

- O3 = {surgical tool, marker,
 m

P} 

- O4 = {image, 
I
Rc, α, aspect ratio, H}  

Transformation matrixes between the external robot end 
effector and the camera (

n
Tc), and between the external robot 

base and the 3D tracker (
0
Ts) are static and known prior to 

the surgical procedure. This information will be used to 
compute where the position tracker is with respect to the 
camera. The 3D tracker acquires the position and orientation 
of a reflective marker attached at the surgical tools. In a 
common surgical procedure, several surgical tools are 
required, so for each of them the system needs to know 
which marker has been attached to it and the tip position 
with respect to the marker reference frame (

m
P). In this way, 

the system will be able to compute the tool’s position using 
the marker’s information from the 3D tracker. As shown in 
Fig. 3, the image provided by the camera robot has its own 
reference frame {I}, with the singularity that images are in 
2D. So rotation matrix between {I} and {c} is defined as the 
following 2x2 matrix: 

 
  
  
    

  
  
  
   

   
  

  
  
  
                (1) 

The field of view of the camera can be defined by two 
properties: the angle of view (α) and the aspect ratio. The 
angle of view is the angular extent of a given scene, while 
the aspect ratio describes the proportional relationship 
between the image width (w) and height (l). The last field of 
the image object, H, is the distance from the camera lens to 
the scene, i.e., the abdominal cavity depth, and it is used to 
compute the image width and height:  

                                      (2) 

                                         (3) 

Using these data, position of {c} frame with respect to 
the image frame (

I
Oc) is:  

  
                                 (4) 

On the other hand, the surgical knowledge represents the 
basis for the surgical state estimation algorithm. It contains 
the surgical task model and a surgeons’ gestures library. 
Most surgical tasks, as suture, can be modeled as a state-
transition diagram, where the overall task is divided into a 
sequence of basic actions called gestures. In this work, we 
have considered a suturing task which can be divided into 
six states: start, stitching, pulling out, knot tying, thread 
cutting, and end. Start represents the initial state of the task; 
stitching involves inserting the needle in the tissue with the 
right grasper while pressing on the tissue with the left 
grasper; after stitching, the pulling out state involves 
extracting the needle with the left grasper and pulling out to 
pass the thread through the tissue, while pressing on with the 
right tool; afterwards, in the knot tying state a loop is created 
with the right grasper, and the remaining thread is passed 
through the loop; finally, the right grasper is substitute by a 
scissors tool for thread cutting, which leads to the end state. 
Fig. 4 shows the state-transition diagram of the suture task 
described above, while transitions between states are 

described in Table I. Each state of the diagram is 
characterized by a surgeon’s gesture, so transitions to the 
next state are triggered when a gesture has been completed, 
except the first transition, which is triggered by a voice 
command when the surgeon is ready to start the procedure. 
Surgeon’s gestures are modeled using Hidden Markov 
Models (HMMs) because of its high flexibility for 
representing the surgeon’s behavior. Gestures patterns are 
obtained in a training phase, where a gesture’s library is 
built. This library is used to match the data acquired by the 
3D tracker concerning the motion of the instruments handled 
by the surgeon with the data trained offline.  

 

 

Figure 4. Suture Task Model 

TABLE I.  TRANSITIONS DESCRIPTION 

Transition Description 

T01 Voice command ‘start’ 

T12 Recognition of stitching gesture 

T23 Recognition of pulling out gesture  

T34 Recognition of knot tying gesture 

T45 Recognition of thread cutting gesture 

 

Secondly, procedural memory contains knowledge of 
how to perform particular behaviors of the camera robot. 
Behaviors are functions containing camera robot primitives 
that change the viewpoint of the image. When positioning 
the endoscope in a surgical procedure, the main factor to 
take into account is the position of the instruments. A 
solution traditionally assumed is to center the surgical tools 
in the image. Weedy et al. [12] enhanced camera positioning 
by predicting the movements of the tools, but different 
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surgeons may handle the instruments in different ways, so 
this solution could lead to positioning errors when it is used 
by a surgeon who hasn’t trained the system. In this work, we 
have defined a FOA for each task state. A FOA is described 
by an object O, a position of O in the image, and a zoom 
factor (zoom). This way, we can not only track a surgical 
tool, but also to determine the area of interest of the task. For 
example, during stitching, the task takes place at the right 
side of the tool that is pressing on the tissue, so in this case 
the FOA would be to position the tool in the left of the 
image. As depicted in Fig. 3, to position an object O in a 
desired location of the image, we use two parameters, r and 
d. These values, both between 0 and 1, are used to define 
how to the right and how down, respectively, O is in the 
image. Therefore, only one function is required in the 
procedural memory, with different inputs depending on the 
actual state of the task. Steps of the FOA function, which 
inputs are {O, r, d, zoom} are:                         

1) To acquire tool’s marker transformation matrix 
(

s
Tm) from the 3D tracker. 

2) To compute marker orientation matrix (
c
Rm) and 

origin (
c
Om) with respect to the camera frame {c}: 

  
    

     
     

     
  

   
 

    
         (5) 

where 
0
Tn is the direct kinematics of the external 

robot, and 
n
Tc, and 

0
Ts are defined in the semantic 

memory.  
3) To calculate tool position with respect to the 

camera frame (
c
P):   

                                   (6)     

4) To correct image width and height with the actual 
camera zoom (actual_zoom): 

                    ;                        (7) 

5) To compute tool position with respect to the image 
frame (

I
P), in 2D: 

                                   (8)     

6) Desired tool position (
I
Pd) according to parameters 

r and d: 

  
   

  
  

    
  
       

    
                        (9) 

7) Incremental motion of the robot in the x0-y0 plane to 
place the tool in the desired location in the image: 

             
                         (10) 

where 
0
RI is the rotation matrix between planes x0-

y0 and xI-yI. 
8) Finally, digital zoom is applied to provide a camera 

zoom according to parameter zoom.  

Finally, episodic memory represents the experience of 
users over time. It stores a users’ profile library containing 
the users’ preferences as regards to the camera viewpoint for 
each task state. When the system is started, it asks for a user 
name. If the user name does not exist in the profiles library, 
a new profile is created with the default FOA parameters (O, 
r, d, and zoom) for each state. During the operation, the user 

interacts with the system through voice commands. The 
HMI is provided with six voice commands: left, right, up 
and down, to change the camera position, and zoom in and 
zoom out to change the zoom factor of the image. This way, 
the user can communicate the system his/her preferences for 
each state. When a motion voice command is activated, the 
external robot moves the camera a fix quantity (inc_motion) 
in the corresponding direction. This predefined quantity is 
corrected with the actual camera zoom in order to provide a 
coherent motion in the image: 

                                          (11) 

Then, the system acquires the corresponding tool’s 
marker position and computes the position of the tool’s tip 
using equations (5)-(8). Afterwards, parameters r and d of 
the actual task state are updated as follows: 

 
 
 
   

     

     
                           (12) 

On the other hand, when a zoom voice command is 
activated (inc_zoom), the zoom factor of the actual state is 
updated as: 

                                       (13) 

Therefore, after the task is performed the user’s profile 
has been update with his/her particular preferences. When 
the user performs the task again, the system loads his/her 
profile, instead of the default FOA parameters, thus 
decreasing the number of voice commands the user has to 
communicate to the system.    

B.  Short-term memory 

Short-term memory represents the inference engine of 
the system, where reasoning and deciding procedures take 
place. This memory is divided into two blocks: surgical 
state estimation and FOA generator, which triggers the 
corresponding robot behavior from the perceptual memory 
according to the actual state of the task.  

The surgical state estimation module requires a model of 
the task being performed (from the surgical knowledge) and 
a recognition system to evaluate the transitions among the 
different states. As described in the previous subsection, the 
task model is a state-transition diagram, which transitions 
are triggered when a particular gesture is recognized. The 
surgical state estimation module acquires data of the 
surgical tools from the perceptual system (3D tracker), and 
outputs the actual state of the task. Surgeons’ gestures are 
modeled using Hidden Markov Models (HMMs), a 
stochastic technique commonly used to evaluate surgeon’s 
skills [15] and to predict surgical states [16]-[17]. As 
described in previous works [18]-[19], a surgical gesture is 
associated with a pattern λk described by the following 
parameters: λk = (S, E, A, B, π), where S is the set of basic 
actions that characterized a particular gesture, E is the set of 
observable characteristics that describe each basic action, A 
is the probability distribution matrix relating the basic 
actions, B is the probability distribution matrix establishing 
the most probable observable characteristic in each state, and 
π is the initial states distribution. In this work, the observable 
characteristics are defined by the interaction between the 
surgical tools, namely, the tip’s distance, the angle between 

742



  

the tools and their velocities. Gestures patterns λk are trained 
off-line to build the gestures library. During the operation, 
the recognition system identifies a certain gesture by 
matching the observable characteristics sequence (E) 
acquired form the tracker with the gestures library. When a 
gesture is recognized, a transition state of the task model is 
triggered.    

The FOA generator inputs the actual state of the task and 
outputs the FOA parameters of the actual state to the 
procedural memory, which triggers the corresponding FOA 
function to provide the optimal viewpoint for the actual 
state. Therefore, the FOA generator consists of a table 
relating each task state with its corresponding FOA 
parameters. Default values for our particular work are 
described in Table II. For the stitching state, the FOA is on 
the right side of the left grasper, as it is the area where the 
needle will be inserted, with a zoom factor of 1.25; for 
pulling out, zoom is turned off and the right grasper, which 
is pressing on the tissue, is placed at the right side of the 
image, as pulling out of the needle is performed with the left 
tool; for knot tying, the left grasper, which holds the needle, 
is placed at the centered of the image in the horizontal side 
and at the bottom in the vertical one, as the knot will be 
performed in the upper side; finally, for thread cutting, the 
right grasper is substitute by a scissors, and the left grasper, 
which still holding the needle, is centered in the image. For 
the two last states, a zoom factor of 1.5 is applied, as these 
are the most challenging states.  

TABLE II.  FOA GENERATOR (DEFAULT PARAMETERS) 

Task state 
FOA parameters 

O r d zoom 

Stitching Left grasper 0.4 0.6 1.25 

Pulling out Right grasper 0.75 0.6 1 

Knot tying Left grasper 0.5 0.7 1.5 

Thread cutting Left grasper 0.5 0.5 1.5 

IV. EXPERIMENTS 

A.  Implementation 

The experimental set-up is shown in Fig. 5, along with a 
camera snapshot in a certain instant. The external robot is a 
7 DOFs Barrett WAM (Barrett Technology, Inc.), a cable-
driven robot which exhibits zero backlash and has low 
friction and low inertia. The 3D Tracker is a Polaris Spectra 
(NDI), a real-time 3D optical tracker used in a variety of 
surgical applications. The camera properties are: angle of 
view of 50º, aspect ratio of 16:9, and resolution of 1280 x 
720 pixels. The height of the abdomen simulator is 220 mm. 
The cognitive architecture has been implemented in 
MATLAB 2013. Video display is integrated in the cognitive 
architecture program, using a MATLAB Timer Object with 
a period of 0.04 seconds, so camera image is displayed at 25 
fps. The surgical state estimation algorithm requires a high 
computational time, as it has to acquire data from the 3D 
tracker in real-time. In order to not compromise the video 
display quality, this module has been performed in an 
external computer. Communication between the cognitive 
architecture and the computer running the surgical state 

estimation is performed by User Data Protocol (UDP) 
protocol. On the other hand, the Barrett WAM is provided 
with a built-in real-time control library (libbarrett-1.2.1) 
written in C++. Communication between the cognitive 
architecture and the WAM is performed by TCP/IP protocol. 
The architecture sends the incremental motion of the robot 
output by the FOA function in the WAM reference frame. 
The open-source framework ROS [20] is used to receive this 
data and send it to the WAM node.  

 

Figure 5. Experimental set-up 

B.  Experimental results 

To test the cognitive architecture described in section III, 
a set of in-vitro experiments have been performed. Five non-
expert users have been asked to perform a suture task 
according to the task model described in Fig. 2. First, users 
have performed three trials of the task using just voice 
commands to get the optimal view of the operating area in 
each state. Number of voice commands and overall time 
have been recorded. Results are reported in Table III, where 
T1, T2 and T3 represent the users’ trials, and mean is the mean 
parameter value of the three trials. Secondly, users have 
been asked to perform the same task but using the cognitive 
architecture proposed in this work. Results are shown in 
Table IV. As regards to the number of voice commands, 
comparing mean values of Table III with results of the first 
trial of Table IV, it can be seen that performance of the task 
with the cognitive architecture requires less voice 
commands, as the system provides a predefined camera view 
for each state in an autonomous way. After the first trial, the 
system learns the preferences of users through the episodic 
memory. Consequently, the number of voice commands in 
the third trial is reduced in a 100%, 67%, 60%, 85% and 
67% for user 1, 2, 3, 4 and 5, respectively.  

With respect to time, results do not show a direct relation 
between the use of the cognitive architecture and the overall 
performance time. While some users reduce considerably the 
overall time (as user 1), others increase it (as user 2). This is 
mainly due to the inherent complexity of the task, which 
makes that time widely varies even in different trials of the 
same user, and also due to that users have to adjust the 
camera view in the first trial when using the cognitive 
architecture. However, results do show that with the 
cognitive architecture, overall time is reduced in a 47%, 8%, 
21%, 9% and 15% in the third trial with respect to the first 
one, as the system has already learned the users’ preferences.  
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TABLE III.  EXPERIMENTAL RESULTS USING JUST VOICE COMMANDS 

User 
# Voice commands Time (s) 

T1 T2 T3 Mean T1 T2 T3 Mean 

1 16 12 11 13 132 87 87 102 

2 12 10 11 11 123 107 85 105 

3 7 9 8 8 94 90 80 88 

4 14 10 8 11 104 119 103 109 

5 11 9 8 9 127 95 95 106 

TABLE IV.  EXPERIMENTAL RESULTS USING THE COGNITIVE 

ARCHITECTURE 

User 
# Voice commands Time (s) 

T1 T2 T3 T1 T2 T3 

1 4 1 0 88 87 47 

2 6 4 2 120 114 111 

3 5 4 2 93 87 80 

4 7 4 1 100 96 94 

5 6 2 2 92 91 83 

V. CONCLUSIONS  

This paper has presented a cognitive architecture for a 
camera robotic assistant. The goal of the cognitive 
architecture is to provide the user the optimal camera view 
of the operating area for each state of the task in an 
autonomous way. To this aim, each task state has been 
characterized by a FOA, which is defined by an object, a 
position of the object in the image, and an image zoom 
factor, which delimits the area of interest of a particular 
state. When a task state is recognized, the system triggers the 
corresponding camera behavior to change the viewpoint of 
the scene. The architecture has been tested through a set of 
in-vitro experiments, aimed at comparing the number of 
voice commands and the overall performance time when 
using just voice commands versus using the cognitive 
architecture. Results show that the number of voice 
commands is significantly reduced in the second case, thus 
reducing the user workload, who can focus in the surgical 
task instead of interacting with the system to change the 
camera view. Moreover, a learning mechanism has been 
implemented in order to take into account particular 
preferences of users. Results show that both the number of 
voice commands and the overall performance time are 
reduced for the five users after three trials. The experiments 
show promising results of the cognitive architecture, which 
could be used for different tasks models by adapting the 
FOA parameters and augmenting the system knowledge. 
The learning mechanism can also be improved by adapting 
the FOA default parameters for new users taking advantage 
of experiences of other users.   
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