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Abstract— This paper summarizes our on-going efforts to
design adaptive assist-as-needed impedance controllers for an-
kle rehabilitation. Two robot assistance control strategies were
evaluated: the first one attempted to normalize the combined
robot and patient impedance via a complementary robot stiff-
ness based on the estimate of the patient’s stiffness and the
second one searched for an optimal solution that minimized a
cost function relating the rehabilitation goal and the interaction
between patient and robot. For both strategies, the robot level
of assistance was adapted based on patient’s performance on
distinct video games (serious games). Preliminary experimental
results, employing the Anklebot in one stroke patient, confirmed
the feasibility of the proposed control schemes in helping the
subject to complete the tasks with optimal assistance from
robot.

I. INTRODUCTION

Stroke is the leading cause of permanent disabilities in
the world with over 15 million new stroke cases occurring
every year. About 35 percent of people who suffer a stroke
die within 30 days (stroke is the third leading cause of
death in developed countries and the first cause of death in
the developing world); about 50 percent of stroke survivors
are left permanently disabled and in need of rehabilitation
[1]. Stroke generally damages neural areas that control the
movement of both upper and lower limbs. Although the
improvement of clinical post-stroke care has increased the
survival rate, the number of people who need rehabilitation
has increased significantly because of the aging of the
population (e.g., in 1995 there were 450,000 new strokes in
the US while presently over 795,000 occur annually). The
natural course of recovery for the survivors affords some
respite; however, a program for physical and occupational
therapy is always required to promote additional gains. Post-
stroke therapy is labor intensive with one therapist interacting
one-on-one with a patient during several hours per day [2].
Rehabilitation robotics is a novel solution to assist with the
increasing demands in rehabilitation services and to augment
the potential of patient recovery [3]-[6].

Different control schemes have been tried with the assist-
as-needed approach leading to best overall results and effec-
tiveness [4]. Assist-as-needed imparts external forces to aid
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the patient to reach a desired target only when s/he cannot
complete the movement unassisted [7].

Assist-as-needed paradigm can be seen as a minimization
problem [8], where the control algorithm should minimize a
cost function relating the rehabilitation goal and the interac-
tion between robot and patient. In a rehabilitation process, the
robot/patient interaction is equivalent to the teacher/student
relationship as described in [9]. The best results are achieved
when the teacher (robot) aims to minimize the student
(patient) error, while also seeking to minimize its own effort
[10].

In this paper, we tested two distinct adaptive control
strategies intended to increase patient’s participation and
to assist only as needed during strength training. Initially,
we present an error-based patient’s stiffness estimation as
a valid measurement of patient’s participation. Then, both
schemes determine the necessary robot assistance. The first
approach attempts to normalize the combined robot and
patient impedance while achieving an admissible target error.
In the second case, the optimal robot assistance is estimated
from the cost function minimization. The cost function is
defined as the weighted sum between the force exerted by
the robot on the patient (to reduce the robotic assistance) and
the patient motion error (to complete the task). We monitor
patient’s performance while playing the serious game to
reduce the robot assistance and challenge the patient to do
more. We will present the results with both approaches in
pilot tests during ankle therapy.

The paper is organized as follows: Section II presents
the Anklebot characteristics and the interactive environ-
ment; Section III presents the procedure to estimate the
patient’s stiffness; Section IV presents both the comple-
mentary impedance and optimal control strategies for robot
assistance; Section V presents the experimental results; and
Section VI presents the conclusions.

II. SYSTEM DESCRIPTION

A. Robotic Device: Anklebot

We employed the Anklebot (Interactive Motion Technolo-
gies, Inc., Watertown, MA, USA), which acts on the ankle
joint via two linear actuators mounted in parallel to the leg,
allowing movement in all three degrees of freedom (dof) of
the foot with respect to the leg and actuating two of these
dof [11]. The actuated movements are dorsi/plantarflexion
(DP) in the sagittal plane, when the actuators move in the
same direction, and inversion/eversion (IE) in the frontal
plane, when the actuators move in opposite directions. The
anklebot can apply up to 23 N/m in DP and 15 N/m in
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IE. Although not sufficient to support the weight of the
user, these torques can properly position the ankle during
the swing phase and assist during toe-off and heel-strike gait
phases, minimizing foot drop and slap in stroke patients.
We employed an impedance controller with a controllable
torsional stiffness and damping.

Fig. 1. Anklebot.

B. Interactive Environment

The anklebot can be employed in seated position or during
walking over a treadmill or overground. In this work, we
employed a set of visually-guided, visually-evoked serious
games in seated position (Figure 1) to guide the patient to
make the maximum effort at each movement.

The patient must hold the weight of a watermelon or
control the upward trust of a balloon in the interactive
environment, and then dorsi- or plantarflex (DP) the ankle
to hit the desired target (Figure 2). The goal is to reach the
largest number of targets in the shortest possible time.

(a) (b)

Fig. 2. Interactive environment. (a) Downward force (watermelon’s
weight), dorsiflexion movement; (b) Upward force (balloon’s thrust), plan-
tarflexion movement. The arrows in the figure represent the resistive forces
(they do not appear during the game) and the blue circle is the target.

The objective of these simple games is to train plantarflex-
ion during push-off and dorsiflexion during toe-off.

III. ESTIMATION OF PATIENT’S ANKLE STIFFNESS

In order to estimate the patient’s ankle stiffness, a dynamic
model of the patient-robot system is proposed. Considering
only the DP degree of freedom and the dynamic proprieties
of the foot and robot, the model is given by:

Iθ̈ +Bθ̇ = τr + τh + τp, (1)

where θ is the DP angular position, I is the combined
patient-robot inertia, B is the combined system damping, τr
is the torque generated by the robot’s impedance control,
τh is the torque generated by the patient, τp is the external
torque simulating the object weight (watermelon) or upward
thrust (balloon). The external torque is artificially generated
by the robot motors by adding a constant value to the applied
torque (assumes small values of θ).

The Anklebot’s PD controller is defined as:

τr = Krθe −Br θ̇, (2)

where θe = θd − θ is the position error, θd is the desired
DP angular position, θ̇ is the DP angular velocity, and Kr

and Br are, respectively, the desired stiffness and damping
of the impedance controller.

Assuming the patient adopts a position error-based control
solution similar to the robot controller, we can model the
patient behavior as:

τh = Khθe −Bhθ̇, (3)

where Kh and Bh are, respectively, the patient stiffness
and damping.

Replacing (2) and (3) in (1), and assuming steady state
condition, the patient’s stiffness can be estimated as:

K̂h =
τp
θe
−Kr, (4)

where K̂h assumes only positive values, that is, K̂h =
min{ τpθe − Kr, 0}. Equation (1) indicates that the ratio
between the external torque and the steady state position
error minus the stiffness imposed by the robot defines the
stiffness of the patient. This makes sense, since the sum of
patient and robot stiffnesses must reflects the ratio between
the external torque and the position error.

IV. ADAPTIVE CONTROL STRATEGIES

In this paper, we propose two strategies to compute the
robot stiffness according to the patient behavior, leading s/he
to perform the best effort and complete successfully the task
imposed by the game. The robot stiffness is adapted online
based on the patient’s stiffness estimate.

A. Complementary Adaptive Control

The first assistance strategy is based on the necessary
stiffness the patient-robot system must achieve to obtain an
acceptable performance. To this end, we define an admissible
error, θadme , and compute the necessary combined stiffness
as:

Kadm =
τp
θadme

. (5)

Thus, the robot stiffness is determined by the following
equation:

Kc
r = Kadm − K̂h, (6)

where Kc
r also assumes only positive values and K̂h is the

patient’s estimate stiffness, computed in the previous section.
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B. Optimal Adaptive Control

This strategy proposes to generate the robot stiffness so
as to minimize a cost function that characterizes the assist-
as-needed paradigm. Interaction between patient and robot
is equivalent to the teacher-student relationship, where the
best result is achieved when the teacher (robot) minimizes
the student error (patient), while minimizing its own effort
[11].

The cost function associated with the robot behavior in a
patient learning process is as follows:

J = θ2e + βτ2r , (7)

where β > 0 is weighting parameter. Assuming again
steady state condition, τr = Krθe, hence:

J = θ2e
(
1 + βK2

r

)
. (8)

From (4), the final form of the function to be optimized
is given by:

J = τ2p

(
1 + βK2

r

)(
Kr + K̂h

)2 . (9)

Differentiating J with relation to the robot stiffness, Kr,
and equating to zero, we can find the minimum of the cost
function:

∂J

∂Kr
= 2τ2p

(βKrKh − 1)(
Kr + K̂h

)3 . (10)

Solving for Kr:

Kr =
1

βK̂h

. (11)

Thus, the robot stiffness should be inversely proportional
to the estimated stiffness of the patient. A similar result is
obtained in [8], however, in that work the patient’s stiffness
is assumed to be constant.

In the above solution, since no admissible error is defined
and considering no patient participation (K̂h ≈ 0), the best
way to achieve the desired position is to increase indefinitely
the robot stiffness. In order to prevent such a situation, the
following constraint is defined:

Ko
r = min

{
Kadm − K̂h,

1

βK̂h

}
. (12)

Figure 3 shows a schematic representation of (6) and (12),
for β = 0.5, with relation to the patient’s estimate stiffness.

C. Performance-based Adaptation

Regarding (6) and (12), if the patient does not participate
during a given target appearance (K̂h ≈ 0), the robot will
completely assist the movement within an error threshold,
which is defined in the interactive environment as the con-
dition to the next target appearance. In order to impose a
necessary participation of the patient, an assistance factor

Kadm

Kr

hK̂

o

rK

c

rK

Fig. 3. Schematic representation of the assistance strategies.

is defined, limiting the robot action. The practical robot
stiffness, Kr, is given by:

Kr = αKr, (13)

where 0 < α < 1 is the assistance factor. If α is defined,
for example, as 0.5, the robot will assist up to the double of
the admissible error in case of no patient participation.

The proposed adaptive strategy is a simple performance-
based strategy of the form:

αk+1 = fαk + g(1− P ), (14)

where k is a given game sub-section consisting of a set of
target appearances, f and g are, respectively, the forgetting
and gain factors, and P is the performance measurement
given by:

P =
Ns
N
, (15)

where Ns is the number of successfully completed move-
ments during a given game section and N is the number
of targets in that sub-section. If the patient has a good
performance during the section (P ≈ 1), the robot assistance
decreases by reducing α, due to the forgetting factor, chal-
lenging the patient in the next section. On the other hand,
if the patient has a poor performance (P ≈ 0), the robot
assistance increases due to the gain factor g.

The block diagram of the proposed adaptive stiffness
control solution is presented in Figure 4.

Impedance 

Controller

Patient 

+ Robot

-

+ θθd θe tr

Patient’s 

Stiffness 

Estimation

Adaptive 

Controller

hK̂

rK

Fig. 4. Adaptive Impedance Control.
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V. RESULTS

The proposed control schemes for robot stiffness adapta-
tion were first evaluated on a patient-robot system simulator.
We then tested, as a proof of concept, in one person with
stroke during two sessions. This study was approved by the
Ethics Committee of the Federal University of São Carlos
(Number 26054813.1.0000.5504) and was conducted at their
clinic.

A. Simulation

The patient-robot system was modeled using the Sim-
Mechanics toolbox of Matlab/Simulink, according to the
actuation principle of Anklebot, which considers two linear
actuators mounted in parallel to the leg, Figure 5. The
adaptation and control laws, as well as dynamic trajectories
generator, were implemented in embedded Simulink blocks.
In this paper, it is assumed a model of the ankle, as defined
by (3).

Fig. 5. SimMechanics model of Anklebot-patient system.

Figure 6 shows the patient’s stiffness estimate and adapted
robot’s stiffness for a given profile for the actual patient’s
stiffness. Note that the estimated value converges to the
actual one in the steady state condition. The estimation
dynamics can be adjusted by properly adjusting the damping
control parameter, Br, of the robot controller.

B. Impaired Subject

Two sessions were performed by a stroke patient: male, 57
years old, 62 kg, 84 months since onset, right hemiparesis,
right-side dominant, no Ankle-Foot Ortheses use, Barthel
score 19, Berg score 38, Timed Up and Go test (TUG)
29.7 s, walking speed 0.56 m/s (10 m - limited community
ambulator).

The evaluations occurred at the same day, with an interval
of 30 min between them. The experimental protocol consists
of the evaluation of the two adaptive solutions, complemen-
tary and optimal, with the patient performing 100 movements
(50 dorsiflexions and 50 plantarflexions) during each game
section (a 5 min rest time is given to the patient between
games).

0 2 4 6 8
0

20

40

60

80

100

120

Time (s)

St
if

fn
es

s 
(N

m
/r

ad
)

 

 

Patient (sim.)
Patient (est.)
Robot

(a)

0 2 4 6 8
0

20

40

60

80

100

120

Time (s)
St

if
fn

es
s 

(N
m

/r
ad

)

 

 

Patient (sim.)
Patient (est.)
Robot

(b)

Fig. 6. Simulated patient’s stiffness, estimated patient’s stiffness, and
robot’s stiffness: (a) complementary adaptive control and (b) optimal adap-
tive control.

The external torque simulating the watermelon’s weight or
balloon’s thrust, τp, is defined as 3 Nm, representing approx-
imately 20 N of weight (thrust) at the forefoot. Actually, the
external torque changes gradually from -3Nm (dorsiflexion)
to 3Nm (plantarflexion), and vice-versa, after the subject hits
the targets or after the available time period (3 s) expires.
The desired positions representing the targets, θd, are defined
as 7◦ rad (dorsiflexion) and -7◦ rad (plantarflexion). The
admissible error is defined as 20% of the desired position,
ie., θadme = 1.4◦. From (5), the necessary combined stiffness
is Kadm = 125 Nm/rad.

The performance-based adaptation procedure, Section IV-
C, starts with α = 0.5 and updates its value every 10
movements, defined as a game sub-section, that is, N = 10
in (15). The following parameters are used: f = 0.95, g =
0.1, Br = 1 Nms/rad, and β = 0.0005.

Figure 7 shows typical responses for patient’s stiffness
estimate, robot’s stiffness, and ankle DP position for both
adaptive control strategies. The figures shows a successful
movement attempt and only the period of time where the
patient’s stiffness estimate is not zero, that is, only when
there is an estimated active participation of the patient. The
robot’s stiffness starts with the maximum allowed value,
αKadm = 62.5 Nm/rad (computed from (6), (12), and (13),
with K̂h = 0) and decreases according to the increase of
patient participation following the same set of equations.
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Fig. 7. Typical responses for patient’s stiffness estimate, robot’s stiffness,
and ankle DP position: (a) and (b) complementary adaptive control, (c) and
(d) optimal adaptive control.
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Fig. 8. Robot’s stiffness versus patient’s stiffness estimate, complementary
adaptive control.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

Patient Stiffness (Nm/rad)

R
ob

ot
 S

tif
fn

es
s 

(N
m

/r
ad

)

 

 

Theoretical
Experimental

Fig. 9. Robot’s stiffness versus patient’s stiffness estimate, optimal adaptive
control.

The decrease rate of the complementary adaptive solution
is lower than of optimal one. This behavior could be pre-
dicted, since Figure 3 shows a greater declination rate for
the optimal adaptive curve for small values of K̂h = 0.
Actually, Figures 8 and 9 show robot’s stiffness versus
patient’s stiffness estimate experimental results, respectively,
for complementary and optimal adaptive solutions, and the
corresponding theoretical curves, for α = 0.5.

The resulting robot’s stiffness curves can explain a char-
acteristic observed from the two evaluations. The mean time
to complete the task (MT ) for the optimal solution is lower
than for the complementary one, Table I. As the robot
decreases its actuation early in the optimal case, the patient
detected the change in the level of assistance and he had also
to increase his participation early, completing the task in a
shorter time.

TABLE I
MEAN TIME TO REACH THE TARGET (MT ) AND COST FUNCTION (JT ).

Evaluation 1 Evaluation 2

MT (ms) JT MT (ms) JT

Complementary 387 0.107 497 0.121

Optimal 306 0.059 386 0.070

Table I also shows the computed cost function over time,
JT , considering only the time periods where we have active
participation of the patient, i.e.:

JT =

n∑
i=1

∫ T i
f

T i
0

(θ2e + βτ2r )dt, (16)

where n = 100, T0 and Tf are the time instants where
the patient, respectively, starts his active participation and
reaches the target (in Table I, MT =

∑n
i=1 (Tf − T0)/n).

Note that the optimal solution presents, as expected, the
lowest value of cost function for the two schemes.

Regarding the performance-based adaptation, Figure 10
shows the values of α and P obtained at the first evaluation
of the optimal adaptive control solution. The results for the
other evaluations are similar. Figure 11 shows the computed
cost function over time for the game sub-sections, that is,

J10(k) =

kN∑
i=1+(k−1)N

∫ T i
f

T i
0

(θ2e + βτ2r )dt, (17)

for k = 1, ..., 10 and N = 10. Note that the patient’s
performance is sustained at a high level during the game
section and the level of robot assistance, represented by α,
is decreased according to (14). As consequence, the optimal
solution imposes a higher participation of the patient which,
in the given example, results in an increase of the cost
function, mainly due to the increase of the position error.

VI. CONCLUSIONS

In this paper, we proposed and evaluated two adaptive
impedance control schemes for rehabilitation robotics, with
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experimental validation using the Anklebot. The two solu-
tions, complementary and optimal, are based on an online
estimation of the patient’s stiffness (which, in some sense,
represents an estimate of the active participation of the
patient). Simulated and experimental results show that the
proposed control strategies can effectively estimate the pa-
tient’s stiffness and properly set the level of robot assistance
in order to complete the task. The optimal solution seems
to further stimulate the active participation of the patient by
reducing the robot assistance early during the task.
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