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Abstract— The main aim of this preliminar study was to
support the orthopedic surgeon with information about the
position of the graft placement of the ACL, using the data
provided by a spatial model of the knee. A mathematical model
available in the literature and based on the theory of mechanism
has been here reimplemented. In particular, the numerical
approach to the definition of the model has been modified
respect to the original by introducing the quaternion algebra
and the differential evolution algorithm. This methodology has
already shown to be capable to produce mechanisms that
match the natural motion of the knee [8]. Any implementation
of it may thus be useful in the preoperative planning with
information of the position of the graft placement of the ACL.

I. INTRODUCTION

When surgery of the anterior cruciate ligament (ACL) is
required, preoperative planning is a critical step in defining
the parameters to be considered prior to the surgery. In this
context, orthopedic surgeons need to define scientifically the
best insertion position for the graft, which approximates the
functionality of an intact ACL. It is a particularly complex
case when the graft can not be placed in the natural area of
ligament insertion, mainly when this natural area is too small
to perform the surgical procedure. In such cases are chosen
adjacent places to the natural area of insertion, but there are
not knowledge about the repercussions it will have on joint
kinematics.

The objective of this research was to propose an imple-
mentation of a mathematical model of the human knee, based
on the theory of mechanisms and originally proposed in [8],
which, respect to the previous versions, will make use of
quaternion algebra and the differential evolution algorithm.
The mechanical model should simulate the movement that
occurs in the knee during the passive flexion. This method-
ology will be used to implement custom models of the knee,
to provide information to assist the medical decision making
in the preoperative planning.

The synthesis methodology starts with a preliminary
model, obtained by a sistematic approximation of the main
kinematic functions of the knee joint. Those main kinematic
functions were transformed into kinematic constrains into the
model. By using of experimental data from the human knee
joint and the optimization by differential evolution algorithm,
the preliminary model is refined.

1Robotics Laboratory LAR, Federal University of Santa
Catarina, University Campus, Trindade, Florianopolis/SC, Brazil.
danielpo25@gmail.com

2Biomechanics Engineering Laboratory LEBm, Federal University of
Santa Catarina, University Hospital, University Campus, Trindade, Flori-
anopolis/SC, Brazil rroesler@hu.ufsc.br

The proposed methodology provides three novel contri-
butions in relation with the existing models: The sistematic
approximation used to obtain the preliminary model allows
a clear vision about the function of the anatomic elements
of the knee for further analysis. The use of quaternion
algebra has shown advantages because the processing time
has decreased around four times in relation to the time
obtained using matrix algebra, where this matrix algebra is
traditionally used in the other existing models [4], [8]. The
differential evolution algorithm solves global problems and
should simplify the algorithm by simply removing of the
refinement step. At least two optimization process are found
in the literature, the first one is for solve the global problem
and the second one is for refinement [4], [8].

This paper begins with the biomechanical analysis of the
knee. The background of robotics is then presented, which
is used for the analysis and modeling of the knee. The next
section presents the proposed methodology for the modeling.
Finally, the results and conclusions are presented.

II. BIOMECHANICAL ANALYSIS OF THE HUMAN KNEE

The knee anatomy is divided into four key parts:
bone anatomy, muscular anatomy, meniscus and ligament
anatomy. The knee bone anatomy: composed by the distal
end of the femur, the proximal end of the tibia and patella
(Fig. 1a). The muscular anatomy: is composed by the upper
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Fig. 1: Structures of the knee and ACL with femoral origin
and tibial insertion circled in red.

and the lower muscles and they can classified into flexors,
extensors, adductors, abductors and rotators [2]. The menis-
cus: they are plates of fibrocartilage which dampen impacts
between the faces of tibiofemoral contact (Fig. 1a). The
ligament anatomy: is composed by the cruciate ligaments
(anterior ACL and posterior PCL) and the collateral liga-
ments (medial CML and lateral CLL) as presented in Fig.
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(1a). The natural insertion areas of the ACL are circled in
red in Fig. (1a).

The movement of the knee is governed by ligaments
and geometric constraints of the articular surfaces. For each
knee pose, its spatial position can be described by three
coordinates that compose the vector p=(x,y,z); and its spatial
orientation can be described by three rotations angles that
compose the vector r=(α, β, γ) (Fig.1b). The vectors p
and r related the movement of the anatomical center of
the femur Sf with respect to the anatomical center of the
tibia St, where St is consider the origin of the coordinate
system following the biomechanical convention adopted [1].
As shown in (Fig.1b), the direction of the knee position
components of p are defined as: anterior-posterior x, axial y
and lateral collateral z. The directions of the knee rotation
components of r are defined as: flexion angle α, varus-valgus
angle β and internal-external rotation γ.

The knee can develop two ways of movements: active
and passive movement. The active movement is considered
when the knee is subject to its muscular activation or an
external load. The active motion has six degrees of freedom
(6 − DOF ) [10], it means that is necessary 6 independent
variables to fully described the instantaneous joint pose. The
passive movement, or passive flexion, is considered when the
knee is not subject to any muscular activation nor external
load and it has 1−DOF [8], it means that is necessary one
independent variables to fully described the instantaneous
joint pose. For instance, imposing a flexion angle α it can
obtained the position and the orientation of the knee. Also,
the knee presents two specific movements in its flexion-
extension path: the screw−home and the rollback [2]. The
screw − home is a movement developed in the transverse
plane, and corresponds to the tibial internal-external rotation
in the first 20◦ of flexion, starting from a maximum extension
of the joint. Rollback consists on a defined movement in the
sagittal plane, where in the first 30◦ of flexion the femur
rolls on the tibia without slipping. After this point the
femur sliding and begins gradually to predominate about
rolling. Thus, in the end of the flexion, the femur slides
without roll over the tibia (pure rotation). The passive motion
analysis is very important for the analysis of the articular
stability, prostheses design [7] and preoperative planning, for
this reason the passive movement is used in this work.

III. MATHEMATICAL ANALYSIS OF PARALLEL
PLATFORMS TO MODEL HUMAN KNEE JOINT

This section covers the analysis for the parallel platforms
which can inspire the modeling of the human knee. Also, a
revision and analysis of the quaternion algebra to solve the
kinematics of these parallel platforms, is performed.

A. Knee modeling by spatial parallel platforms

The geometric analysis of a parallel manipulator can
contribute to modeling the knee, because it has a base and a
moving platform which serve as an analogy of the tibia and
femur, respectively. The parallel manipulator also has limbs
that allow the ligaments and condyles to be modeled. In this

regard, is of great interest the the analysis of the Stewart-
Gough. This platform is a spatial parallel manipulator of
6-DOF (as the active knee movement), formed by six SPS
limbs. The Fig. (2a) shows the Stewart-Gough platform: six
identical limbs, with prismatic actuators, connect the moving
platform to the fixed base by spherical joints at points Bi and
Ai (i = 1, 2, ..., 6), respectively.

Moving platfomr

Fixed base

Spherical joint

Prismatic joint

A

B

Spherical
 joint

a) b)

Fig. 2: Parallel platforms: a)Stewart-Gough platform, adapted
from [9]. b) 1−DOF parallel platform, adapted from [8]

For the analysis, two cartesian coordinate systems, frames
A(x, y, z) and B(u, v, w) are attached to the fixed base and
moving platform, respectively (Fig. 2a). The transformation
from the moving platform to the fixed base can be described
by the rotation matrix ARB = Rz RxRy and by the position
vector p which origin is at A and goes up to B [9]. As shown
in Fig. 2a, it is consider ai = [aix, aiy, aiz]

T and Bbi =
[biu, biv, biw]

T as the position vectors of points Ai and Bi
in the coordinate frames A and B, respectively. Considering
Li as the limb length for each limb AiBi (i = 1, ...6), it can
written the vector− loop equation [9] for the ith limb of the
manipulator as follows:

‖p +A RB
Bbi −Ai‖ = ‖Li‖, (i = 1, . . . , 6). (1)

In order to obtain a parallel platform that allows the
passive motion of 1−DOF to be modeled, several consid-
erations on the geometry of the Stewart-Gough platform has
to be performed, as reduce the limb number and eliminate
the prismatic joints, turning the six SPS limbs into five SS
limbs. The resulting 1−DOF parallel platform [8] is shown
in Fig. (2b). As the 1−DOF parallel platform has 5 limbs, it
can be obtain a system of i=5 vector-loop equations. In order
to solve the position p and orientation r of the 1 − DOF
moving platform, it imposed the the flexion angle α, resulting
in a system of 5 equations and 5 unknowns (β, γ, x, y, z).

B. Quaternions Algebra

Let {1, i, j,k} the standard basis of R4. Quaternions are
elements of the form q = w + x i + y j + z k, where
(w, x, y, z ∈ R) and i2 = j2 = k2 = ijk = −1. The
quaternions space is denoted by H. If w = 0, the quaternion
q correspond to 3D vectors and it is called pure quaternion.
Therefore it is natural to think of quaternions as the sum of
a scalar and a vector, that is,

q = w + v = Sc(q) + V e(q), w ∈ R,v ∈ R3.
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Let us consider two quaternions, namely q1 = w1 + x1 i +
y1 j + z1 k = w1 + v1 and q2 = w2 + x2 i + y2 j + z2 k =
w2 + v2. The usual operations are:

q∗ = w − v Sc(q) = q+q∗

2 V e(q) = q−q∗
2

q1 + q2 = (w1 + w2) + (v1 + v2) ‖q‖2 = qq∗ = q∗q
q1 q2 = (w1w2 − v1 · v2) + (w1v2 + w2v1 + v1 × v2)

For pure quaternions we have q1q2 = v1v2 = −v1·v2+v1×
v2 which establishes the quaternions and R3 inner and outer
product relation. Also for pure quaternions, v1v2 + v2v1 =
−2
(
v1 · v2

)
and v1v2 − v2v1 = 2

(
v1 × v2

)
.

The rotation of a vector a (pure quaternion) is given by
a′ = q a q∗, where q = cos θ2 + s

(
sin θ

2

)
:= q(s, θ) is the

quaternion operator which encodes the rotation around the
axis represented by unit vector s and its angle magnitude θ.
A more general form of rotations from quaternions is given
by

a′ = q (a− s0) q
∗ + s0, (2)

where s0 is the rotational axis position vector. To more
definitions and properties of quaternions we suggest [5] and
[3].

The vector loop equations (Eq.1) for the 1−DOF parallel
platform (Fig 2b) can solved by quaternions algebra. In this
way the rotational matrix ARB is replaced by the quaternion
rotator q = qz qx qy , where qx = q(i, β), qy = (j, γ) and
qz = (k, α) are the quaternion rotators around the 3D
axes. Also we must codified the vectors p, Ai and Bi into
quaternions algebra as following: p = 0 + p, ai = 0 +Ai,
bi = 0 + Bi. Therefore, the vector loop system (Eq.1) is
reduced to:

‖p+ q bi q
∗ − ai‖ = ‖Li‖, (i = 1, . . . , 5). (3)

From the equation components,√
aT
i ai + bTi bi + pT p− 2aT

i p+ 2(p− ai)T
(
q bi q∗

)
= Li. (4)

Imposing the flexion angle α into the five vector loop
equations for the 1 − DOF parallel platform (Fig. 2b) we
solve the system in two different ways: from quaternions
algebra (Eq.3) and from matrix algebra (Eq. 1). An important
observation was performed in this work: using quaternion
algebra the solutions were obtained in 13.1s, about four times
faster than using matrix algebra.

There are three facts that explain our faster results. First:
the quaternions algebra offers an alternatively algebra to
model problems, and in our modelling we get a somewhat
less nonlinear system. Second: the rotational operator storage
requirements are reduced from nine (matrix) to four (quater-
nions) [3] and the computational cost is better in quaternions
algebra [6]. Composition of rotations requires 16 multipli-
cations and 12 additions in quaternion representation, but
27 multiplications and 18 additions in matrix representation
[6]. Third: the rotational parameters identification are easily
obtained from the quaternion operator.

IV. PROPOSED METHODOLOGY

The proposed methodology for spatial modeling of the hu-
man knee, consisting of three steps: (1) experimental session,
(2) Preliminary modeling and (3) kinematic modeling. These
steps are described below.

A. Experimental session

Fig. 3: Preliminary Geometrical parameter GP : Ai, Bi and
Li, (i = 1...5), based on [4]

Consist in the obtaining of experimental data based on
two analysis of the human knee: the geometrical analysis
and the kinematics analysis. These analysis was performed
by [4], who processed the data obtained by an optoelectronic
device and knee specimens.

In this paper, is used the geometrical analysis performed
by [4] to obtain the search domain. The search domain
is used in the optimization process (for syntheses and mod-
eling) and it enclosed anatomical components of interest, as
ligament insertion areas and central condylar regions that
contains the centrodes. The search domain is consider as
a spherical volume with center and radius defined by the
searcher and it allows the preliminar geometrical parameter
GP to be found. The GP are the ligament insertion points,
the ligament lengths and the condylar center points. The
condylar center point is the center of the sphere that best fit
at each condyle. The GP are presented in the Fig. (3) and
they are Ai, Bi and Li (i = 1, ..., 5), where Ai is measured
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with respect to St and Bi is measured with respect to Sf .
The GP are explained in detail below. The insertion points
of the most isometric ligament fibers of the ACL, PCL and
MCL on the tibia are A1, A2 and A3, respectively and on
the femur are B1, B2 and B3, respectively. The length of the
most isometric fibers of ACL, PCL and MCL are (in green)
L1, L2 and L3, respectively. The center points of the medial
and lateral condyle on the tibia are A4, A5, respectively and
on the femur are B4 and B5, respectively. The length of the
links that joint the center of the medial and lateral condyles
are (in black) L4 and L5, respectively.

As shown in Fig. (3), there are 35 GP (10 points of three
dimensional coordinates corresponding to the positions Ai
and Bi and five Li lengths (i = 1, ...5).

The kinematic analysis allows the knee passive flexion
to be measure, obtaining experimentally the position and
orientation of the femur (Sf ) with respect to the tibia
(St). With this information is obtained the experimental
kinematics parameters KP ∗: the position vector p=(x,y,z)
and the orientation vector r=(α, β, γ), for each flexion angle
α imposed, in the course of the whole passive flexion. The
KP ∗ was obtained by [4] who recorded the passive flexion
for each instantaneous flexion angle α by an optoelectronic
device and markers with active emitting dioes fixed in to the
tibia and femur, as shown in Fig. (4), where m is the number
of captures on the whole passive flexion. The KP ∗ are used
later to be compared with the movement of the model to
verify its accuracy.

Fig. 4: Experimental kinematic parameters KP ∗: p=(x,y,z)
and r=(α, β, γ)

B. Preliminar modeling

This step consists in the synthesis of a 1−DOF mecha-
nism composed by elements that represent the fundamental
anatomical structures that allow the passive motion of the
knee to be performed. This is accomplished through a
sistematic approximation (Fig. 5), where each basic move-
ment of the knee is associated with an equivalent kinematic
constraint. At the end of this process is obtained, in a
preliminary form, a representative functional mechanism
of the human knee. This sistematic approximation begins
with a mechanism of a simple hinge joint with congruent
cylindrical contact surface (Fig. 5a), that represents the

Fig. 5: Sistematic approximation to perform the preliminary
model of the human knee joint.

kinematic constrain that only allows the rotation movement
to be performed, modeling the main function of the knee: the
flexion. The next step follows the first modification (Fig. 5b):
introducing incongruent contact surfaces and positioning two
set of limbs with spherical joints (SS limbs) in both sides
of the mechanism, where the motion guidance has become
entirely dependent on limb connections allowing the rotation
movement only. Second modification (Fig. 5c): maintaining
the rotational movement, the arrangement of the contact
surface has been inverted performing two set of condyles
(medial and lateral) where the upper part of the mechanism
represent the femur and the lower part, the tibia. Third
modification (Fig. 5d): one pair of cross arrangement of SS
limbs is positioned in each side, allowing the rollback move-
ment (rolling and sliding). Fourth modification (Fig. 5e): the
medial condyle of the tibia has been changed to a concave
shape, and the lateral condyle of the tibia has changed into a
convex shape (as the anatomy shapes). The medial condyle is
bigger than the lateral condyle, allowing the screw− home
movement (axial rotation). Fifth modification (Fig. 5f): one
pair of the cross arrangement of SS limbs were excluded.
The remaining cross limbs were set in the anatomical cruciate
ligaments position. A SS limb was added in the medial
side of the mechanism for lateral stability, representing the
medial collateral ligament. Sixth modification (Fig. 5g): The
circle that best fits on each condyle has been approximated,
then the center of each circle was located. The centers of
each circle has designated as the spherical joint of a link,
resulting in the preliminar mechanical model of the knee
(Fig. 5h). This preliminar model is topologically similar to
the previously proposed in [8]. This mechanism is a parallel
platform composed by five SS limbs, a fixed platform and
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a moving platform, with a spatial 1 − DOF , according to
Grübler criterion [9], where λ are the degrees of freedom of
the work space, n the number of links of the mechanism, j
the number of spherical joints and fi the degrees of relative
motion permitted by joint i:

F = λ(n−j−1)+
∑
i

fi = 6(7−10−1)+(3 ·10) = 6 (5)

however, there are 5 passive degrees of freedom associated
with the five SS limbs. Therefore, the parallel platform
posses 1−DOF , as the passive flexion of the knee joint.

C. Kinematic modeling

This step is based on an existing proposed method [4],
[8], adding novel contributions: the use of the quaternions
algebra (instead matrix algebra) to solve the equations that
describe the model movement and the use of differential
evolution algorithm, that should simplify the optimization
by removing the refinement process found the literature [8],
[4]. The differential evolution is here implemented (instead
genetic algorithms) because has only three control param-
eters and the influence of these parameters is well known.
Also, allows easy implementation and different possibilities
of recombination to produce new test populations. In the
differential evolution algorithm are optimized the GP in
order to obtain a model with KP closer to the experimental
KP ∗.

As shown in Fig. 6 the process of kinematic modeling
start with the data obtained in the experimental session,
where is obtained the search domains and the experimental
kinematic parameters KP ∗. The search domain data enter in
the optimization process (differential evolution algorithm),
where the preliminar geometrical parameters GP are de-
termined. These GP (Ai, Bi and Li) determining a first
approximation of the knee model. Seven equally spaced
flexion angles α was chosen in the whole passive flexion.
At each optimization iteration, the vector loop equations
where solved at this seven α angles, obtaining the kinematic
parameters of the model KP at these seven poses. The
KP were iteratively compared with the experimental KP ∗

for each pose. The sum of the weighted squares of errors
between the experimental knee poses and the model poses
had to be minimized, constituting the objective function (Eq.
6), where m = 1, ..., 7 are the number of poses due to the
equally spaced α angle, KPm are the five i-unknowns, KP ∗m
are the desired (experimental) values of the unknowns, and
Wm are the weights necessary in order to account for the
different dimensions of the unknowns. If the vector loop
equations are not satisfied at some pose, a very high value
is assigned to the objective function as a penalty.

O.F. =

5∑
i=1

7∑
m=1

= (KPm −KP ∗m)2/W 2
m (6)

The optimization process is repeated until a small value
to reach V TR has found, it mean that the generated model,
with the final GP (Fig. 6), allows a movement (KP ) very

similar to the experimental one (KP ∗) obtained from an
human knee.

V. RESULTS

The relative orientation and position of the femur with
respect the tibia are shown in Fig. 7 and 8 as a function
of the flexion angle α. In these figures are presented the

Fig. 7: Orientation of the femur with respect to the tibia:
◦ proposed model; ◦ other knee model [4]; ◦ experimental
data [4].

Fig. 8: Position of the femur with respect to the tibia: ◦
proposed model; ◦ other knee model [4]; ◦ experimental data
[4].

experimental data in red [4], [8], the data from other models
found in the literature in green [4], [8] and the data obtained
from the proposed model (blue). The results of the model
found in the literature are sightly better then the proposed
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Fig. 6: Kinematic modeling process.

model, but is reasonable because these authors used two
nested optimization process [4], [8]. The proposed model
can replicate the passive knee motion, therefore, the proposed
methodology proved its effectiveness. The final GP of the
proposed model are inside of the search domains imposed.
The final GP are (in mm): A1 = (12.86, 0.01,−4.49), A2 =
(−19.32,−10.12,−3.95), A3 = (14.62,−98.06,−9.78),
A4 = (8.45,−47.31, 20.14), A5 = (−4.25, 28.04,−31.87),
B1 = (−7.43, 0.08, 11.07), B2 = (−2.82,−0.39,−3.99),
B3 = (0.71, 4.25,−46.41), B4 = (−4.34, 1.33, 23.29),
B5 = (1.87, 5.58,−17.77), L1 = 29.25, L2 = 35.80,
L3 = 129.51, L4 = 470.52 and L5 = 12.28.

VI. CONCLUSIONS

This methodology has already shown to be capable to
produce mechanisms that match the natural motion of the
knee [8]. Any implementation of it may thus be useful in the
preoperative planning. Specifically, the proposed methodol-
ogy could help to found an insertion point for the ACL graft,
different to the natural insertion area, without compromising
the joint kinematics. It could be accomplish by the use
of search domains in a different place of these natural
insertion areas.

The proposed methodology provides three novel contribu-
tions by reimplementation of the existing models [4], [8]:
the sistematic approximation to obtain a preliminary model,
the use of the quaternion algebra to solve the equations
that describe the kinematics of the model and the use of an
optimization process by the differential evolution algorithm.
The sistematic approximation used to obtain the preliminary
model provides a clear vision about the function of the
anatomic elements of the knee for further analysis. The use of
quaternion algebra has shown advantages in the processing:
around four times in relation to the time obtained using
matrix algebra, where this matrix algebra is traditionally used
in the other existing models. The differential evolution algo-
rithm as an alternative to the genetic algorithms. Whereas

in the literature, at least two optimization process are found:
one to solve the global problem and another to refinement
the solution, and they have shown more accurate results.
Finally, the model would be improved by modifying the
weight function, and increasing the number of optimization
points (more than seven) in order to reduce the difference
with the experimental orientation data.
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