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Abstract – Swarm robotics requires the development of new 

strategies and algorithm integration, which allow for the im-
provement of the design and the applications for harvesting or 
collecting resources. This paper describes the programming 
and design of Finite State Machines (FSM) bio-inspired algo-
rithms for seeker and resource gathering Pherobots systems, 
like Anthill Known Location (AKL) aggressiveness and sense of 
panic. FSM designing allows for the use of control architectures 
for behaviour-based agents and for measuring the change in 
system performance. Simulations demonstrate the capability of 
the algorithms under different environments and scenarios. 
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I. INTRODUCTION 

Distributed systems is a branch of science that has 
aroused the interest of researchers, and is currently booming. 
Distributed artificial intelligence, Multi-Agent Systems 
(MAS), distributed robotics, are topics included in this clus-
ter. Swarm robotics is an applied field related to these topics, 
where modelled biological paradigms are transferred to 
artificial swarms in order to understand the means of solving 
problems that real swarms have to face in their environment. 

Pherobots are a particular case of swarmbots based on 
species colonies that communicate and organise through 
chemical messages. Through emergent behaviour the overall 
result is known giving another view of portraying the set of 
agents as an autonomous system that meets specific tasks. 
Local interactions of information make swarm behaviour 
emerge [1].  The bio-inspired algorithms are improved con-
tinuously to understand this behaviour by means of surveys 
and tests in order to resemble those found in nature. 

The swarm behaviour of ants is the basis of defining how 
the swarm robot system will operate [2]. Ants communicate 
among themselves using pheromones; pheromones are clas-
sified into primer pheromones which are related to the 
queen’s substance, and releaser pheromones which are asso-
ciated to sexual pheromones, alarm pheromones, trail 
pheromones and aggregation pheromones [3].  Using a 
pheromones trail ants attract other ants to food, when they 
are in the process of food gathering. ________________ 
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The properties of the pheromone trail are adjusted accord-
ing to changes in the environment. Virtual Pheromone is 
related to the connection of the agents through the software 
[4]. Implementing the swarm behavioural mechanism to the 
robotics is feasible; the proposed method is the adjustment 
of the trail duration based on the food quantity. In the real 
environment the food volume is limited, so when the food is 
finished, the pheromone trail attracting the agents is inter-
rupted in order to refocus the search to another place [5].  
Considering the simulated and experimental results ob-
tained, the mentioned method is effective.  

On the other hand, the methods of evaporation and diffu-
sion are demonstrated through the increase of the pheromone 
field and strengthen the information when the nest is found. 
However, the swarm is a distributed autonomous system, 
and the results of simulations and experiments have variance 
due to external condition changes like humidity and tem-
perature. Colonies of social insects are constructed by enor-
mous numbers of the individuals, so in order to decrease the 
variance the number of agents must be increased [6]. 

Data acquisition systems ensure that the whole system 
will be operational, and an important characteristic, which 
simplifies future implementations, is modularity. The em-
bedded system proposed in [7] was successfully integrated 
into a low-cost commercial mobile robot for creating a 
modular robot platform with advanced sensor capabilities.  

Some of the advantages of MAS over single agent sys-
tems is the failure to be tolerant, because the task could be 
completed by other agents even if some of them fail; the 
scalability of the number of agents operating increase with-
out affecting the system design; the simplicity of design is 
not a performance obstacle during the task, as it does not 
require advanced programming. This means a reduction of 
costs and construction time; some tasks require a group 
solution, so a collaborative MAS is suitable for developing 
the task; greater efficiency let us solve a task using less time.  

An alternative to approach a better system implementation 
is the design in [8]; an experimental device to study bio-
inspired self-organization paradigms as stigmergy. An inter-
active surface is proposed which provides an active envi-
ronment to implement and display dynamic information 
which allows the robots to interact with each other. The 
challenge of the swarm ant algorithms resides in defining 
cooperation rules that would help to the global function of 
the system [9]. 

According to the above, this paper proposes to measure 
the performance improvement of an emergent behaviour 
such as seeking, and gathering resources by a pherobots 
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group. Three algorithms for simulation are used to determine the effects and consequences of each one in the final re
results.  
The tool Pyro (Python Robotics) is used to control a set of 

robots based on swarm intelligence programming [10]. In 
practice, Pyro normally operates in addition to a simulator 
such as Player/Stage. The main objective is to enable pro-
gramming swarm robots to search for target objects in maze. 
As a result, the swarm robots are capable to move the target 
objects in a maze to the home location, the starting point. 
The success of the implementation is that using the control 
logic (the brain) of swarm robots, a swarm intelligence for 
solving a maze problem is implemented, moving a set of 
target objects in a maze. 

The Player/Stage is an open source/free software for mul-
tirobot simulation that enable the testing of swarm systems 
and will be the tool used in this trial [11]. 

This paper is structured as follows; Section II briefly de-
scribes the characteristics of the algorithms implemented. 
Section III contains the description of the FSM and how it 
works. Section IV shows the algorithms implemented on the 
FSM. Section V presents the tests and the results based on 
implementation.  Section VI explains the results of the simu-
lation using Pyro. Section VII is reserved for conclusions 
and future possible research work. 

II. BIOINSPIRED ALGORITHMS APPLIED 

The main objective of this paper is to use three algorithms 
based on animal behaviours on swarm pherobots. Each algo-
rithm has specific functions and a specific goal; however 
these should not be in opposition to the overall aim.  

A. Anthill Known Location Algorithm (AKL) 

In [12], is defined tha AKL Algorithm main feature is the 
Anthill Known Location, hence the name. AKL implies a 
deep knowledge of agents that facilitate the return of ants to 
the origin place. This knowledge is centred on the observa-
tion of ants’ colonies, which have complex organs and sys-
tems that permit them to count their steps with the purpose 
of estimating the direction of where the anthill could be, or 
to guide them in determining the sun’s position. Therefore, 
erratic and random movements when seeking food results 
taking them more time, than when they are simply returning 
to the anthill. 

Also in [12], is studied the dependence between simulated 
swarms that use AKL and others that use Sectorial Division 
of Labour (SDL). The latter one attempts to eliminate the 
knowledge and replace the orientation system by using other 
sensors. It is observed that when using the AKL method 
convergence exists, which in this case achieves 100% con-
vergence. The convergence means that the agents are able to 
build and strengthen a pheromone’s path between the anthill 
and the food area. That study concluded that an orientation 
system allows for a correct performance of the swarm while 
the SDL algorithm depends on the environment and on ex-
perimental conditions. 

B. Feeling of Panic and Self-preservation Algorithm 

Panic is an individual, inherent signal in animals; phero-
bots artificially spread panic to affect the behaviour of each 
agent with the intention of moves from one activity to an-
other while does not compromising their integrity and avoid-
ing exposing them to damage. The term “feeling” refers to 
the way used by an agent to calculate and decide that it 
might be at risk, either by external variables such as a preda-
tor or inner variables such as low energy level. 

 This technique allows for keeping most of the agents in 
operation and contributing to the task. Panic is defined as a 
consequence of an event where an agent reaches the end of 
the map without having found food, so the agent is lost [12].  
Reference [13], has another point of view, it defines panic as 
an state of the agent caused by an obstacle that has not been 
avoided, resulting in the agent getting stuck, so it sends out a 
panic signal  to move backward to try and get out of the state 
and continue navigating. 

Using this type of conservation strategy is essential for the 
proper performance of MAS, however its impact has not 
been measured on overall performance which may be of 
future research interest. 

C. Spatial Interference Reduction 

The aim of this strategy is to prevent collisions between 
agents that attempt to occupy the same space due to compe-
tition among homogenous agents that can cause stagnation. 
In order to solve this difficulty, in [13] is proposed a bio-
inspired technique based on the aggressive behaviour among 
animals competing for a resource; this is a passive fight that 
uses a non-contact ritual dance and is denominated rational 
aggression. 

There are three simple ways to stimulate aggressive be-
haviour of agents, apart from rational aggression, which 
depends on the way of estimating the level of aggressive-
ness: random, pre-established hierarchy and the amount of 
free space behind them. The greater the area the higher the 
level of aggressiveness.  

D. Gripper Algorithm 

The gripper algorithm simulates a two arm claw with sen-
sors, which are activated when objects are inside. This ele-
ment is suitable for the collecting objects task. The specifi-
cations of the prototype must define the arm claw size and 
the initial state (open/close). The use of Gripper is inspired 
by the robotic device Pioneer Gripper, used on the research 
robot Pioneer. The Gripper interaction with the simulation 
environment is adequate for the gathering objects task in the 
map. In addition, the Gripper could be programmed using 
bio-inspired algorithms in order to increase the efficiency 
during the task. The performance of sensors’ prototype   is 
shown on Fig. 1. 
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Fig. 2, Fig. 3 and Fig. 4 show how a map with the AKL 

and Spatial Interference Reduction algorithms applied looks 
and the path followed by an agent that has identified the 
resource. 

III. STATE MACHINES BASED ON BEHAVIOURS  

The state machines enable the development of a method 
to include new algorithms in the agent’s programming, and 
thus measure the impact of each one on the overall system 
performance.  

 
Fig. 1.   The “Ant.inc” prototype and some of its sensors operating. 

 

 
Fig. 2. RING map simulation shows the path followed and the trail 

strengthen. 

 
Fig. 3, Some agents are spreading and following the pheromones path to 

find the food resource 
 

 
Fig. 4,  Two agents figthing for space, using Spatial Interference Reduction 

Algorithm.  

A control architecture based on behaviours is used; it is 
compound, with layers that correspond to a single behaviour 
or state, a concept is introduced in [14]. The behaviours are 
not linked, but sorted by relevance; advanced behaviours are 
at the top while survival behaviours are at bottom, some 
behaviour may inhibit another based on external changes of 
the environment. One of the most outstanding benefits of 
behavioural control is that systems are capable of overcom-
ing failures, if any of the behaviour from above has failed, 
the survival behaviours can keep the robot operating. 

Through the implementation of FSM, the agents are simu-
lated with a behavioural architecture. One of the main fea-
tures of using FSM is that the change of logic signals 
through the states can be represented easily using graphics, 
while other tools like truth tables need to show all the com-
binations that stimulate the change [14]. Thereby, it is just 
required to consider the output signal and the possible future 
state. Additionally, each state has some actions associated 
that activate specific signals. For this reason all the states' 
change are known and defined by transition paths. Thus, a 
present state will only change to a known future state. The 
main advantage in using FSM is the high independence of 
the states and the low linkage between them. This implies a 
direct association of the control architecture based on behav-
iour with the states of a FSM. 

The state machines have transitions defined that are acti-
vated by a logic function. For implementing state machines 
using code, it is enough to use control words from a pro-
gramming language like C++, for example if, while, for or 
switch. 

Fig. 5 shows a FSM of a basic gathering agent capable to 
explore, gather, go back and avoid obstacles. The initial state 
of this machine is the behaviour “navigate”. When the agent 
navigates, it can find an obstacle or an object to collect. In 
the case that the agent encounters an obstacle, he avoids it 
and continues navigating. If the object is to be gathered, the 
agent approaches, takes it, and then carries it back to the 
starting point. If the agent finds an obstacle when he is going 
back, he has to avoid it and continue on his way. After the 
agent arrives at the anthill, he goes out and starts to explore 
again to continue the cycle. 

 
Fig. 5 State Machine for a Collector Agent 

 
The logic signals used in both basic FSM as improved 

versions are consequences of the application of bio-inspired 
algorithms are explained in Table I. 
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When the agent is performing an established behaviour 

and any of the signals described above turn on then a state 
change is produced and the pherobot changes its behaviour. 

In this study case, the agent actuators are the wheels to 
move and the claw to take the objects. The behaviours can 
be defined like all the actions that agent does through those 
actuators. 

TABLE I. LOCAL SIGNALS FOR STATE TRANSITIONS 
NAME DESCRIPTION 

OBSFOUND TURNS ON WHEN THE DISTANCE SENSORS DETECT OB-
JECTS WITHIN ITS OPERATING RANGE 

NOOBS TURNS ON WHEN DISTANCE SENSORS DO NOT DETECT 
OBJECTS WITHIN ITS OPERATING RANGE. IN THE CODE 

THIS SIGNAL AND OTHERS ARE NEGATED FUNCTIONS, I.E. 
NOOBS = NOT (OBSFOUND) 

ITEMFOUND TURNS ON WHEN  IN FRONT OF THE  CAMERA OF BLOB-
FINDER SENSOR THERE IS AN ORANGE OBJECT, REGARD-

LESS OTHER COLOURS PRESENT. 
NOITEM NOT(ITEMFOUND) 

INGRIPPER TURNS ON WHEN THERE IS AN OBJECT BETWEEN THE 
HANDLES OF THE CLAW. 

INHOME TURNS ON WHEN THE AGENT IS LESS THAN ONE METER OF 
THE START POINT. 

PHEROMFOUND TURNS ON WHEN  BLOBFINDER SEES A GREEN OBJECT 
AND NO PRESENCE OF ORANGE OBJECTS. 

NOPHEROM NOT(PHEROMFOUND) 
ROBOTFOUND BLOBFINDER IS IN FRONT OF A RED OBJECT AND THIS 

OBJECT IS IN THE RANGE OF FORNTAL RANGERS, THERE IS 
NO PRESENCE OF ORANGE OBJECTS. 

NOROBOT NOT(ROBOTFOUND) 
PANIC SOME TIME WITHOUT FINDING GREEN OR ORANGE OB-

JECTS. 
 

However, there is a particular case related to “avoid ob-
stacles” because the agent reacts automatically applying an 
arithmetic function instead of an algorithm. This is similar to 
reactive control architectures, so the response of the system 
is faster. Another special case is when an object is detected 
near the origin; since it would be an already gathered object 
the agent must reject it. 

IV. SWARM ANTS ALGORITHMS INCORPORATION 

A. AKL Algorithm Incorporating 

The AKL algorithm must include a modification in the 
behaviour code “return” because it is expected that the agent 
leave a trail of pheromone when it has collected an object; 
this implies that it is possible to automatically generate a 
trace between the place where the resources are and the 
anthill, and thus any agent can follow the trace and save on 
search time. 

The second part of the algorithm is “follow trace” in order 
to take advantage of the path marked by other agent. This 
behaviour is not taken into account in the initial state ma-
chine because follow trace was not defined as a behaviour; 
now using a behavioural architecture it has to be defined and 
coupled in the FSM. 

Accordingly, the direction used is opposite to the AKL al-
gorithm direction, so the agent decides to take the path that 
move away from the start point. The result of using this 
technique is as expected; due to fact that the resources are 

located in the far places of the map. These results can be 
matched in the FSM of Fig. 6. 

B. Incorporating Aggressiveness 

The behaviour “fight” introduces the aggressiveness to the 
algorithm; this behaviour is focused on creating a hostile and 
defensive agent, when another agent is blocking his way, i.e. 
an agent is returning to the anthill carrying the resource, 
where it meets with another agent that is following the 
pheromones way. So, this behaviour is aimed on reducing 
the spatial interference between agents, based on animal 
behaviour. In the Pherobot systems, the agents are compet-
ing for the space in front of them, when the winner takes the 
space and the fight is finished. When a Pherobot detects 
another Pherobot in front of frontal sensors, a random work 
variable is calculated between 0 and 10, where 0 is the ag-
gressiveness level and 10 is the fear threshold. This level 
means the distance that the Pherobot will advance or move 
back. The “fight” is implemented using random values so 
the agent calculates a random value of aggressiveness and 
using a math relation the fear threshold is calculated. Ag-
gressiveness Level and Fear Threshold are inversely propor-
tional. 

Having defined this behaviour, it is included in the code, 
adding the logical control signals, Fig.6. 

C. Panic Incorporation 

Panic is a Pherobot’s logic signal which activates by in-
ternal counters and not by sensors.  When a limit, which was 
defined by the programmer, is overcome the Pherobot leaves 
their search and returns to the starting point; the counter 
avoids the event that the Pherobot can be lost after a non-
successful search time, because he returns to the initial point 
to start the search again. These design details allow for a real 
Pherobot improving and increasing its chances to be suc-
cessful and also avoids the risk of getting far and without 
enough energy to return to the initial point. If this happens to 
various robots, the system would be reduced in a significant 
amount. 

The difference between the states are: the state “return” 
ends when the Pherobot arrives at the starting point, while 
the state “Panic” could end when it founds in its return path 
a pheromone’s object. 

This state is activated by the panic signal turning on or 
because the pherobot has an object in its claw. 

Finally, a FSM is defined as a result of a design develop-
ment where are included the three bio-inspired behaviours. 
This version is named Type 3 and it is showed in Fig. 6. 

V. SCENARIOS 

With the FSM codes for the agents is pretended to meas-
ure the performance of searching and gathering for a large 
population. Three different maps are used, low, middle and 
high level difficulty.  

Including different scenarios are necessary, with the pur-
pose of involving the features of multi-agent Pherobots sys-
tems because the environment around them is unknown, and 
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they depend on the environmental information to do their 
task. Additionally, modifying the difficulty levels of the 
maps allows testing the bio-inspired behaviours for such 
purposes. Fig. 7 shows the maps for the tests. 

 
Fig. 6 State Machine with BioInspired Algorithms 

   
           a)Ring                         b) Cave                           c) Autolab 

Fig. 7 Experiment Maps 
Each map has to be accomplished with features defined 

that describe the simulation variables. In Table II the fea-
tures of the test are shown. 

For data collection, the main feature measured is the time 
used by each system to complete the task of searching and 
gathering the objects repeatedly. The average is then calcu-
lated. As verification tool for results were used standard 
deviation and standard error. 

Fig. 9 shows the result of the experimentation for each 
testing environment, like average time for each type of sys-
tem in connection with the difficulty increase. When diffi-
culty increases, the systems take more time to get successful.  

Apart from simulated tests to measure averages, the data 
dispersion effect and the error of measurement are also ob-
served.  

Data dispersion is calculated from the standard deviation, 
which is what measures the dispersion power of a statistical 
function, like those used in this study case. The error that is 
obtained is called the standard error and is calculated from 
the standard deviation and the number of samples. The ac-
ceptance criterion is 10%, and in this case it is not over-
come. 

Due to the pheromones’ effect of creating direct paths be-
tween the resource place and the storage place, the percent-

age of time for solving the problem described in Table IV 
has been improved.  

TABLE II. DESCRIPTIVE SHEET OF VARIABLES SIMULATION 
MAP RING CAVE AUTOLAB 
AREA 314 M2 284 M2  

DIFFICULTY WITHOUT  
OBSTACLES 

FEW  
OBSTACLES 

OBSTACLES AND 
NARROW PATHS 

AMOUNT OF RESOURCES  30  
AMOUNT OF RESOURCES 

PER GROUP  10  

EVAPORATION TIME  24 S  
AMOUNT OF AGENTS  28  

FSM TYPE  BASIC, TYPE 1, 
TYPE 2, TYPE 3  

TIMEOUT  1000 SEC  
AMOUNT OF TESTS PER  

EACH TYPE 16 15 15 

TOTAL TESTS 64 60 60 

 
TABLE III. DECREASE PERCENTAGE ON AVERAGE TIME FOR PHEROBOTS 

SYSTEMS ON DIFFERENT MAPS COMPARED TO THE BASIC AGENTS SYSTEM  
MAP TYPE I TYPE II TYPE III
RING 19% 15% 18% 
CAVE 35% 32% 33% 

AUTOLAB 43% 34% 40% 
 

Another variable highly influential in the success of this 
simulation was the evaporation time, which according to the 
programming criterion and based on observations from each 
one of the maps, is 24 sec. 

TABLE IV. STANDARD ERROR PERCENTAGE ON THE DIFFERENT MAPS 
MAP BASIC TYPE I TYPE II TYPE III
RING 5% 3% 3% 3% 
CAVE 5% 3% 5% 3% 

AUTOLAB 9% 7% 6% 5% 

VI. SIMULATION RESULTS 

Type 3 Pherobots are used to measure the impact of the 
number of agents on performance. During the test, the quan-
tity of agents are changed. As a result, is found that the 
simulated system has simulation deficiencies and contains 
mistakes as well as conflicts in performance, when more 
than 28 agents are used. However, a lower limit was defined 
according to the emergent behaviour of the agents. The 
lower limit is 8 agents. During the tests samples using 8, 12, 
16, 20, 24, and 28 agents are taken, each group of agents are 
tested 10 times and it is applied on the three maps. 

According to the complexity of the system, the number of 
agents required is higher. The survey showed that the task is 
not successful, or is partially fulfilled when 8 agents are 
used, so it is necessary to establish 1000 seconds as a time 
limit. In contrast, the groups with higher population of 
agents completed 100% of the task despite the time it took. 

In Fig. 8 performance curves according to the number of 
agents are shown, whose analysis allows for a criterion of 
the number of robots for experimentation. 

While analyzing the figure, it is noticeable that the effec-
tiveness of the system decreases if the agent’s population is 
lower. The performance of the system in the range of 20 up 
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to 28 agents could be considered as stuck, due to the in-
crease of agents population not increasing the effectiveness 
of the system significantly; the CAVE curve shows that the 
time increases in spite of the population of the agents also 
increasing, so the higher population of the agents does not 
mean more efficiency. 
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Fig. 8 Average Time Obtained for Each Type of Pherobot System 

 
According to the performance results, the similar behav-

iour for each type of system, and the maximum population 
of agents for a stable system, it has been decided that the test 
should use 28 pherobots. 

The bars in Fig. 4 show a large decrease in time needed 
for fulfilling the task of searching and gathering for the sys-
tems based on state machines Type 1, Type 2 and Type 3. 
This behaviour is a tendency that repeats in all simulated 
maps, ensuring that using bio-inspired algorithms increase 
the performance of the systems. 

The average time regarding the use by a system based on 
AKL algorithms, aggressiveness and panic feeling to a sys-
tem based on basic algorithms reflects percentage decreases. 
This information is shown in Table III.  

The systems Type 1, Type 2 and Type 3 have a better per-
formance for complex maps and higher difficulty levels. 
This may be due to the bio-inspired mechanisms being more 
useful in hard conditions because they get feedback from the 
environment, while the success of basic agents is achieved 
randomly. 

Apart from simulated tests to measure the average, the 
data dispersion effect and the error of measurement are also 
observed. 

VII. CONCLUSIONS 

The bio-inspired algorithms improved the pherobots sys-
tems efficiency simulating their searching and gathering 
task, achieving a decrease of up to 18% in RING map, up to 
35% in CAVE map and up to 43% in AUTOLAB map. 

The Anthill Known Localization AKL algorithm and the 
Pheromones Follow Path are the ones that have more impact 
on the system efficiency. 

The implementation of aggressiveness on the simulated 
pherobots system does not increase the efficiency of the 
system directly, however, it is a key development for the 
system and its future implementation, because it allows for 
locating and reacting to the presence of another pherobot, 
avoiding jams, and decreasing the quantity of inactive ones. 

In a real implementation it would help to fulfil the entire 
task. 
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Fig. 9 Average Time Obtained for Each Type of Pherobot System 

 
The feelings of panic and self-preservation are two impor-

tant features of bio-inspired behaviour, even though they  
does not pose a big impact on decreasing the gathering time, 
and do not affect the performance. However, they are values 
added to the system that reduce extra cost as a result of lost 
agents. 
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