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Abstract—Systems based on Surface Electromyography
(sEMG) signals require some form of machine learning algo-
rithm for recognition and classification of specific patterns of
muscle activity. These algorithms vary in terms of the number
of signals, feature selection, and the classification algorithm
used. In our previous work, a technique for recognizing muscle
patterns using a single sEMG signal, called Guided Under-
determined Source Signal Separation (GUSSS), was introduced.
This technique relied on a very small number of features to
achieve good classification accuracies for a small number of
gestures. In this paper, an enhanced version called Hierarchical
GUSSS (HiGUSSS) was developed to allow for the classification
of a large number of hand gestures while preserving a high
classification accuracy.

I. INTRODUCTION

The ability to recognize Motor Unit Action Potential
Trains (MUAPT) using electromyographic signals collected
at the surface of the skin (sEMG) has been used in many
applications, including sign language [1], human-computer
interface [2], prosthetics [3], etc. [4], [5]. In most applica-
tions, an array of differential sEMG sensors is required to
achieve acceptable accuracies [5]. However, there are many
advantages to using a single sEMG sensor such as: freeing up
muscles for use in other applications and interfaces; reducing
hardware cost; aesthetics; patient comfort; etc. The major
challenge of a single sensor approach is to achieve a high
classification accuracy for a large number of muscle patterns
and a small number of features. In the seminal work of [6],
the authors achieved high accuracy, but for four gestures and
using thirty features.

There are a variety of feature types that can be exploited
for sEMG gesture classification. Some of these include:
number of Zero Crossings, Mean Absolute Value, Slope Sign
Changes [6], coefficients of Auto-regressive models [7], [8],
Absolute Maximum/Minimum, Maximum minus Minimum,
Median Value, Variance, Waveform Length, coefficients of
the Short Time Fourier Transform, Wavelets Transform [9],
[10], etc. These features can be extracted from either time
or time-frequency domains [7], [8], [9] and be employed
by classifiers based on Neural Networks, Support Vector
Machines (SVMs), Hidden Markov Models (HMMs), and
fuzzy logic controllers [1], [3], [6], [11]. More recently,
instead of exploring additional features within the sEMG

signals, systems are resorting to alternative sensors such as
gyros, magnetometers, and accelerometers [4].

The method presented in this paper, HiGUSSS, is a hier-
archical version of our previous Guided Under-determined
Source Signal Separation, GUSSS. It also uses a single
sEMG signal and a small number of features, but it achieves
a higher classification accuracy for a higher number of
gestures. The system was tested and compared to traditional
classifiers – SVM and distance classifier – using up to nine
different hand gestures.

II. BACKGROUND AND RELATED WORK

The work in [13] introduced the idea of GUSSS and
the GUSSS ratio. In [13], the focus was on discriminating
different Muscle Unit Activation Potential Trains, or MUAPT
patterns, that emerge when different gestures are performed.
As many systems do, it was assumed that an sEMG sensor
captures a combination of statistically independent MUAPTs
due to cross talk [15], [14]. But unlike most methods in
the literature, the system in [13] relied on a single sensor.
This was possible because the main characteristic of the
GUSSS ratio is that it can indicate the presence or absence
of a particular signature or MUAPT pattern within a sensed
sEMG signal. The term “Guided” in GUSSS refers to the fact
that the sought-out signature is “injected” into the observed
signal in order to obtain a corresponding ratio. A low ratio
indicates that the signature is most likely present within the
sensed signal. A high ratio, on the other hand, indicates that
the signature is not being detected in the signal.

Later, a framework for controlling a power wheelchair
using the GUSSS method was developed and tested in [16].
It proposed a control system based on the recognition of hand
gestures. The use of hand gestures was simply to illustrate
the fact that any muscle activation pattern or signature
derived from a natural and repetitive muscle movement can
be employed by the system. In the case of a person with
severe impairment, any other muscle movement could be
used instead (e.g. eyebrow movement). Compared to other
systems found in the literature, which use multiple sEMG
sources for classification, the method in [16] compared quite
reasonably, reaching up to 92% accuracy for three gestures.

Nonetheless, the goal in sEMG-based systems is to achieve
higher accuracies and to recognize many muscle patterns. As
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mentioned before, most systems reported so far rely on many
sensors or additional peripherals to increase classification
rates. The main purpose of this research is to improve the
classification accuracy that has been obtained in the past, as
well as to increase the number of muscle patterns that can
be recognized, while still relying on a single sEMG signal.

Instead of increasing the number of sensors or using
additional hardware, improvement of the sEMG systems can
be achieved by using a larger number of features and more
sophisticated classification algorithms. For instance, SVMs
have been used by many researchers for classification of
sEMG signals [11], [17], [18]. SVM is a general classification
method that finds a high dimensional hyperplane that passes
between two classes as far away as possible from all points
or samples [19]. An extension to the traditional SVM can be
used for multi-class data.

The method proposed here is hierarchical and GUSSS-
based. Unlike the hierarchy in [12], which is used to recog-
nize combined motions, here the hierarchy is employed to
increase the discriminant power of the classifier.

III. PROPOSED METHOD

This work enhances the original classification approach
from [13] and [16]. A hierarchical classifier is implemented
and additional features are extracted from the sEMG signals.
The proposed framework for the method is illustrated in
Figure 1 and consists of a two-level hierarchical classifier:
1) a GUSSS-based classifier; and 2) a Multi-Class SVM.

As it can be seen in Figure 1, the first level in the hierarchy
involves a number of GUSSS-based classifiers. Basically,
these classifiers function as confidence generators, inputing
feature vectors extracted from the raw sEMG signal and
outputting N confidence vectors ~λ, where the elements of the
vector indicate the confidence that a sEMG signal contains
one of the signatures in the tuples – a tuple is a group with
an arbitrary number of signatures: e.g. doubles, triples, etc.
All of the obtained confidence vectors are concatenated into
a second feature vector, which is then input to the classifier
at the second level of the hierarchy. The output of the second
level classifier is the final class assigned to the observed
sEMG signal. The following sub-sections describe in further
detail the classifiers at each level, as well as their training
process.

A. Class Signatures and Optimal Choice of Tuples

Let us assume that there is a labeled training set with C×T
signals – i.e. T signals from each of the C possible classes
(muscle patterns or gestures). First, a signature for each class
is obtained. The current approach is to do an averaging of
the training signals grouped per class. That is, all T training
signals belonging to the same class c are averaged creating

a single signature: sc = 1
T

( ∑
class c

xl

)
, where xl is the lth

training signal of class c.
Each GUSSS-based classifier is associated to a tuple

of classes, where the sizes and members can be chosen

Figure 1. Proposed framework. There are two levels in the hierarchy. The
first is a GUSSS-based classifier and confidence generator. The second level
is a multi-class SVM classifier.

arbitrarily depending on the gestures, user, muscle activity
patterns, etc. The rationale behind the tuples is the following:
when a large number of C classes are considered at the
same time, there might be much confusion between some
of the classes. However, it is possible to find subsets of
classes for which the confusion between such classes is
minimized. So, the goal of the tuples is to allow similar
classes to be separated. However, it is also desirable to group
as many classes as possible per tuple in order to reduce the
complexity of the algorithm. For this paper, the selection
of the optimal number and the membership in the tuples
was done empirically after trial-and-error. In the future, an
automated method for choosing tuples will be explored.

B. sEMG Features and Level 1 Feature Vectors

As mentioned before, the input to each of the GUSSS-
based classifiers is a feature vector extracted from the incom-
ing sEMG signal. The features used and the way to obtain the
feature vector for a particular tuple i, denoted τi, is described
next. A similar procedure is followed for all N tuples being
considered. Figure 2 depicts a typical sEMG signal and the
features considered.

1) GUSSS ratio: As explained in Section II, the main idea
of the GUSSS method is to identify particular signatures
within a measured sEMG signal. For any given sEMG signal
x, the GUSSS method seeks to identify the presence or not of
each possible signature. This is done by iteratively injecting
signatures and obtaining ratios for each one of them. For all
ni = |τi| classes in tuple τi, the algorithm obtains the ratios
r1, . . . , rni

. If signal x contains a pattern in class c, ratio rc
is expected to be smaller than all other ratios rj , for j 6= c.
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Figure 2. A typical sEMG signal segmented into 3 parts. The zero-crossings
are indicated in the top figure. The rectified signal and the MAVs of the
segments are shown in the bottom figure.

2) Segmentation of the sEMG Signals: Typically, an
sEMG signal from a gesture lasts for around 250 ms to
500 ms. To capture the structural information of the sEMG
signals, we divide them into D segments of equal length.
The features described next are calculated for each segment
of any given signal.

3) Mean Absolute Value: One features commonly used
for sEMG signals is the Mean Absolute Value (MAV). The
MAV of a signal x (t) is obtained by calculating the average
of the absolute values of x at all instants t. If the signal is
discrete, then

MAV =
1

K

K∑
k=1

|x (k)| (1)

where K is the number of samples that constitute a
segment of x.

4) Zero Crossing: Another feature extracted from the
sEMG signals is the number of Zero Crossings (ZC), which
represents how many transitions from positive to negative (or
vice-versa) there are in a segment of a signal.

5) Complete Feature Vector Level 1: After all of the
features described above have been extracted, signal x is
represented by the following feature vector:

~vi = [r1, · · · , rni
, m1, · · · , mD, z1, · · · , zD] (2)

where r1, . . . , rni are the GUSSS ratios for each class in
tuple τi. The MAVs and ZCs for each segment of the signal
are mk and zk, respectively, for k = 1, . . . , D.

6) Statistics of the Gesture Classes: As it will be shown
shortly, the system uses the mean vector and covariance
matrix of each class within the tuples. So, the above feature
vectors are extracted for all T training signals in each
class and are used to form ℵ

(
~µi
j ,
∑i

j

)
, representing the

distribution of class j in the tuple τi, where j = 1, . . . , ni,
and i = 1, . . . , N .

C. Distance and Confidence Values

As it was mentioned before, the output of the first level
in the hierarchy is a set of confidences that are concatenated
to form a second feature vector. The confidences, which are
based on Mahalanobis distances, are obtained from each one
of the GUSSS-based classifiers.

An input signal y is fed into each one of the optimal tuples
described above. For each tuple τi, a feature vector ~vi (eq.
2) is calculated. Then, the GUSSS-based classifiers calculate
Mahalanobis distances to the mean vectors ~µi

j of the classes
in the tuple τi:

dij =

√(
~vi − ~µi

j

) (∑i
j

)−1 (
~vi − ~µi

j

)T
, j = 1, . . . , ni

(3)
If, for example, distance dij is small (close to zero), the

confidence that signal y belongs to class j would be high.
To obtain the confidence values, the complementary er-

ror function is used: erfc(x) = 1 − erf(x). For normal
distributions, erfc

(
d√
2

)
, can be seen as the probability

of a randomly selected sample to fall at a distance of d
standard deviations or more from the mean. For instance,
erfc

(
0√
2

)
= 1, erfc

(
1√
2

)
= 0.3173 and erfc

(
2√
2

)
=

0.0455. Numerically, these values are appropriate as con-
fidence values for Mahalanobis distances of 0, 1 and 2,
respectively. The confidence value function is defined as:

λ(d) = erfc

(
d√
2

)
, d ≥ 0 (4)

For the GUSSS-based classifier corresponding to tuple τi,
the confidence that signal y belongs to class j is given by
λij = λ(dij). In the end, the classifier produces ni confidence
values: ~λi =

(
λi1, . . . , λ

i
ni

)
.

Level 2 Feature Vector: After confidence values are ob-
tained for all N tuples, the second feature vector is created
as follows:

~u =
[
~λ1, ~λ2, , · · · , ~λN

]
(5)

D. Level 2 Classifier: Multi-Class SVM

The final classification method consists of a multi-class
SVM. To train the SVM, the ~u feature vectors are computed
for all training signals, for all classes. When it comes to
classification, an incoming signal y is fed through level 1 in
the hierarchy to obtain the confidences and to create the ~uy
feature vector. The latter is fed to the multi-class SVM in
order to generate the final class assignment.

IV. EXPERIMENTS AND RESULTS

The goals of the experiments performed in this work were
the following: 1) contrast with [16] for the same number of
gestures (4) and with more gestures (5) – Section IV-B; 2)
compare HiGUSSS with non-hierarchical methods – Section
IV-C; and 3) investigate how the accuracy varies as the
number of gestures increases – Section IV-D.
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Figure 3. Hand gestures considered: a) “clench”, b) “up”, c) “tap” (finger
tapping), d) “right-left”, and e) “up-up” (done quickly). The figure shows
the transition from the resting position to the gesture and back to the resting
position.

A. Data Collection

Seven test subjects were asked to perform at least 100
repetitions of each of the five gestures shown in Figure 3.
The sEMG signals of interest, i.e., the ones to be associated
with each gesture, are those generated during the transition
from a resting position to the actual hand gesture and back
to the resting position. Each subject performed all gestures
at the same level of effort and rested between gestures.

A single pair of sEMG electrodes was placed near the
Extensor Carpi Radialis Longus muscle along the forearms
of the human subjects to collect the performed gestures. A
reference (ground) electrode was also placed on the wrist
of the opposite arm of the subjects. The raw sEMG signals
were amplified (×2000) and low-pass filtered (1 kHz) using
a GRASS amplifier (model 15A54) and sampled using a
National Instruments (NI) digitizer at 4 kHz.

The signals were divided into 3 segments (i.e. D = 3), and
the size of the tuples was set to 2 for all tuples (i.e. ni = 2).

B. Results Using the Proposed Hierarchical Method

To contrast with the work in [13], [16], we first tested
the HiGUSSS method with 4 gestures and later with 5
gestures. For each experiment, a 10-fold cross validation
was performed. Each time 90% of the signals of all the
gestures were used for training. The remaining 10% of the
signals were then classified as described in Section III. Tables
I a) – c) show the results using 4 gestures and Tables
II a) – c) show the results using all 5 gestures. Due to
space limitations, the results shown reflect the test subjects
with the highest accuracy, with the lowest accuracy, and the
average for all test subjects. The confusion matrices show
the average percentages over the 10-fold tests. The average
correct classification percentages are also presented on the
bottom of each table.

C. Hierarchical Method vs. Non-Hierarchical Classifiers

The HiGUSSS was also compared to two approaches for
the same features except for the confidences, since the two
approaches used are non-hierarchical. So, instead of using a
pairwise approach, features were extracted from the training
signals for all classes simultaneously. In other words, the

Table I
HIGUSSS: CONFUSION MATRICES FOR 4 GESTURES. THE VALUES ARE

AVERAGE PERCENTAGES OVER A 10-FOLD CROSS VALIDATION.

Assigned gesture
clench up tap up-up

True clench 94.0 0.0 0.0 6.0
hand up 0.0 96.0 0.0 4.0
gest. tap 0.0 0.0 99.0 1.0

up-up 2.0 5.0 0.0 93.0
Correct classification: 95.5%

a) Best case

Assigned gesture
clench up tap up-up

True clench 91.0 9.0 0.0 0.0
hand up 6.0 93.0 0.0 1.0
gest. tap 3.0 6.0 88.0 3.0

up-up 0.0 5.0 1.0 94.0
Correct classification: 91.5%

b) Worst case

Assigned gesture
clench up tap up-up

True clench 88.8 6.1 2.5 2.7
hand up 4.4 94.1 0.4 1.1
gest. tap 2.5 1.5 94.5 1.5

up-up 3.7 2.6 0.8 92.9
Correct classification: 92.6%
c) Average over 7 subjects

Table II
HIGUSSS: CONFUSION MATRICES FOR 5 GESTURES. THE VALUES ARE

AVERAGE PERCENTAGES OVER A 10-FOLD CROSS VALIDATION.

Assigned gesture
clench up tap up-up rgt-lft

clench 94.5 0.9 0.0 0.0 4.5
up 2.7 96.4 0.9 0.0 0.0
tap 0.0 0.0 97.3 0.9 1.8

up-up 0.0 2.7 0.9 96.4 0.0
rgt-lft 3.6 0.9 1.8 0.9 92.7

Correct classification: 95.5%
a) Best case

Assigned gesture
clench up tap up-up rgt-lft

clench 88.0 12.0 0.0 0.0 0.0
up 5.0 89.0 0.0 1.0 5.0
tap 3.0 3.0 86.0 0.0 8.0

up-up 0.0 2.0 1.0 88.0 9.0
rgt-lft 1.0 8.0 6.0 3.0 82.0

Correct classification: 86.6%
b) Worst case

Assigned gesture
clench up tap up-up rgt-lft

clench 86.3 5.9 2.1 2.6 3.2
up 5.1 92.4 0.1 0.9 1.4
tap 3.6 0.6 93.4 0.6 1.8

up-up 3.4 1.7 0.8 91.2 2.9
rgt-lft 5.0 2.3 1.6 2.6 88.5

Correct classification: 90.4%
c) Average over 7 subjects

feature vectors are similar to the level 1 vectors described in
Section III-B5, with GUSSS ratio values for all C classes –
i.e. C gestures.

For the distance classifier, the classification was obtained
by selecting the smallest Mahalanobis distance from the input
signal’s feature vector with respect to the means of the class
distributions.
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Table III
CLASSIFICATION ACCURACIES FOR 7 TEST SUBJECTS. THE VALUES ARE

AVERAGE PERCENTAGES OVER A 10-FOLD CROSS VALIDATION ( 105
SIGNALS PER GESTURE).

Distance
Classifier

SVM Hierarchical

Subject 1 93.5 94.0 95.5
Subject 2 96.8 95.5 95.2
Subject 3 86.8 86.3 91.5
Subject 4 97.9 97.5 96.4
Subject 5 89.7 88.4 90.0
Subject 6 92.0 88.9 89.1
Subject 7 89.5 90.0 90.5
Overall 92.3 91.5 92.6

a) Four gestures

Distance
Classifier

SVM Hierarchical

Subject 1 91.2 91.4 93.2
Subject 2 91.3 93.1 95.3
Subject 3 81.8 83.0 86.6
Subject 4 94.2 93.1 95.5
Subject 5 85.8 84.9 86.5
Subject 6 87.8 88.7 87.6
Subject 7 87.4 90.7 87.8
Overall 88.5 89.3 90.4

b) Five gestures

Tables III a) and b) show the correct classification per-
centages for all 7 test subjects using the three classification
methods. Despite the small differences, overall, both the
distance classifier and the SVM are outperformed by the
proposed hierarchical approach. As pointed out in [13], [16],
we attribute the good performance of all classifiers to the
GUSSS ratio as a feature in all methods.

D. Accuracy vs. Increasing Number of Gestures

One last experiment was performed using up to 9 gestures
to evaluate the effect on the classification accuracy when
increasing the number of gestures. Data for 9 gestures were
collected from one test subject by the same process described
in Section IV-A. The gestures included the 5 shown in Figure
3 as well as four new gestures: “Down”, “clench-clench”,
“open”, and “rotate”. To complete the “down” gesture the
subject bends the wrist towards the ground. To complete
the “clench-clench” gesture the subject quickly does the
clench gesture shown in Figure 3 two times. To complete
the “open” gesture the subject opens the hand extending all
of the fingers. To complete the “rotate” gesture, the subject
rotates the hand clockwise.

Table IV shows the classification percentages for a test
subject using the three classification methods. It’s important
to notice that as the number of gestures used increases, the
gap in classification accuracy between the proposed method
and the other two classifiers grows. This trend is illustrated
in Figure 4 which shows the classification accuracy plotted
against the number of gestures used. A T-test for statistical
significance of this result was performed and the hierarchical
classifier outperforms the SVM with t = 4.11 and df = 6
for p < 0.05, and the distance classifier with t = 4.07 and
df = 6 for p < 0.05.

Table IV
CLASSIFICATION ACCURACY FOR A SINGLE TEST SUBJECT. THE VALUES

ARE PERCENTAGES OVER A 10-FOLD CROSS VALIDATION OF 105
SIGNALS PER GESTURE.

Distance Classifier SVM Hierarchical
3 Gestures 97.3 99.0 98.3
4 Gestures 97.7 94.7 98.5
5 Gestures 96.0 93.4 96.8
6 Gestures 92.1 90.0 94.4
7 Gestures 88.2 87.5 91.3
8 Gestures 84.5 82.3 89.1
9 Gestures 83.6 79.0 86.5

Figure 4. Classification accuracy vs. number of gestures for the proposed
hierarchical approach, the SVM, and the distance classifier, tested with data
from one subject.

V. DISCUSSION AND CONCLUSIONS

The classification results reported in our previous work
([13], [16]) corresponded to some of the gestures used
here, and the average performance was around 80% correct
classification. Following that work, we aimed at improving
the performance of our method both in accuracy and in the
number of gestures to be recognized, while still using a single
sEMG signal. We first added an additional feature – the ZC –
and we segmented the signals, keeping the distance classifier
that we had used before. As it can be seen in the results, the
distance classifier achieved higher classification accuracies
than previously reported – overall averages of 92.3% for 4
gestures and 88.5% for 5 gestures.

We decided to compare the performance of the distance
classifier to another commonly used method such as a multi-
class SVM. The results obtained with both methods were
very similar – 91.5% and 89.3% for 4 and 5 gestures,
respectively. During our tests, we noticed that certain ges-
tures were very distinguishable from each other, and certain
other gestures were very confused with each other. This
observation motivated the tuples and the hierarchical method
presented in this work, which aimed at minimizing the
confusion between those gestures. The results obtained with
the hierarchical approach were, in fact, better than with the
non-hierarchical classifiers – 92.6% for 4 and 90.4% for 5
gestures.

Even though the improvement gained by HiGUSSS was
relatively small, it was interesting to notice that such im-
provement was comparatively higher with 5 gestures than
with 4 gestures. This observation motivated the experiment
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discussed in Section IV-D, where we examined the effect
on the classification accuracy when increasing the number
of gestures. As can be seen from Table IV and Figure 4,
HiGUSSS outperformed the other two methods, and the
differences in accuracy were statistically significant, as con-
firmed by the T-tests results. As expected, as the number of
gestures increased, the accuracies for all of the classifiers
dropped. However, the classification accuracy for HiGUSSS
decreased at a lower rate than for the other two classifiers. In
the case of 3 gestures, the accuracy of HiGUSSS was about
1% higher than the accuracy of the distance classifier and less
than 1% lower than that of the SVM – yet almost perfect.
In the case of 8 gestures, HiGUSSS was almost 5% above
the distance classifier and almost 7% above the SVM. And
with all 9 gestures, HiGUSSS was 7.5% above the SVM,
though it was only about 3% above the distance classifier in
this case.

The results presented here demonstrate the discriminant
power of HiGUSSS. Its better performance compared to the
other classifiers is because the hierarchical method employs
tuples of gestures instead of comparing each gesture against
every other gesture. This is more noticeable as the number
of gestures increases.

VI. FUTURE WORK

The method proposed here showed a good performance
and has potential for many applications such as power
wheelchairs, prosthesis, etc. To further validate the method,
data should be collected from different muscle groups as well
as from people with disabilities. This can give insight on how
the algorithm can be improved for diverse users and muscle
inputs.

A limitation of the current approach is the manual selection
of the optimal tuples. These tuples are important to separate
similar gestures. The Hierarchical GUSSS can be further
enhanced and exploited by an automatic selection of the
tuples.

The GUSSS method relies on the signatures that represent
the different gestures. The current approach of calculating the
signatures is a simple averaging. Other approaches should
be explored to obtain those signatures, for instance, using
Independent Component Analysis (ICA) to separate the
MUAPT components related to the gestures. Improving the
representation of the gestures would have a positive effect on
the GUSSS method, and thus, on the proposed hierarchical
framework.

Finally, the implementation of the framework in a practical
application could take advantage of parallelization for the
first level in the hierarchy. The GUSSS-based classifiers
related to the tuples could run in parallel to generate the
confidences that go to the second level in the hierarchy.
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