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Humanoid fall avoidance from random disturbances predicted via a
Decision Volume
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Abstract— Humanoid fall avoidance is the ability of a robot
to avoid falling when pushed. The decision surface is a region
on the phase diagram delimiting the states beyond which the
robot cannot recover from a disturbance. The disadvantage
of the decision surface is that it is limited to perturbations
in the sagittal and coronal planes. This paper deals with the
generalization of the decision surface to a decision volume,
used for the prediction of limiting states for recovery from
disturbances in any orientation. A second contribution is the
extension of the ankle strategy for humanoid fall avoidance
to disturbances in random directions. The model used is a 3D
Linear Inverted Pendulum Model (LIPM). Both, ankle strategy
and decision volume are tested on the Webots simulator then
implemented on a real humanoid robot.

I. INTRODUCTION

Although the past decades have finally witnessed the
introduction of robots into our homes, most of them—Iike
the Roomba vacuum cleaner—are wheeled platforms. On the
other hand, a humanoid robot is designed with kinematics
emulating those of a human in order to negotiate environ-
ments originally conceived and designed to accommodate
human motion. With this constraint in mind, humanoids
should be endowed with the ability to avoid falling when
pushed from different directions. Although keeping balance
is trivial for humans it is in fact quite challenging to imple-
ment on humanoids, which are open-chained underactuated
mechanisms.

According to Winter [1], [2], the Center of Mass (CoM)
of humans is located at two-thirds of their height. In con-
sequence, this makes humans inherently unstable systems,
needing a control system that is continuously acting. Winter
cites two strategies that are implemented by humans for
fall avoidance. The first one is the ankle strategy, which
is effective for a small disturbance, by counteracting it
with a torque at the ankles. For larger perturbations, the
hip strategy—using both ankle and hip joints to create a
momentum by rotating the torso at the hips—is used. If the
push is yet larger and both the ankle and hip reflexes are not
sufficient, then the human is forced to take one or several
steps in order not to fall.

Stephens [3] originally developed the decision surface
for the ankle strategy, then followed by Jalgha er al. [4],

*This work was partly supported by a grant from the University Research
Board (URB) at the American University of Beirut and partly by the
Lebanese National Council for Scientific Research (LNCSR)

1 Noel El Khazen, Daniel Asmar, and Elie Shammas are with
the Department of Mechanical Engineering, American university of
Beirut, Lebanon nsel4@aub.edu.lb, da20@aub.edu.lb,
es34@aub.edu.lb,

2 Najib Metni is with the Department of Mechanical Engineering, Notre
Dame University, Zouk, Lebanon nmetni@ndu.edu. lb

978-1-4799-3127-9/6/14/$31.00 ©2014 IEEE

[5] and Asmar er al. [6] for the hip strategy. Having the
initial states (position and velocity) of the robot, the decision
surface determines whether the robot is able to recover from
a push, and which strategy is appropriate to use. Jalgha et al.
also implemented the strategies on a humanoid using Virtual
Model Control (VMC) [7]. One disadvantage of the decision
surface is that it is limited to disturbances in the coronal or
sagittal planes.

The capture point is another method developed by Pratt
et al. [8], [9], [10], [11], and it represents a point on the
ground where the robot can step to in order to bring itself to
a complete stop. Depending on the capture point location, a
robot may use its ankles, hips, or even take one or several
steps to recover. Goswami et al. [12] used the machine
learning approach to predict falls. These methods do not
have a defined boundary that is used to determine their
effectiveness.

In light of the limitations in the literature, this paper intro-
duces a technique for recovery from disturbances in random
directions. As an initial step we develop our technique for the
ankle strategy, and implement it to a simulated as well as a
real robot. Furthermore, we present what we call the decision
volume—extending the idea of the decision surface— to draw
the limiting state conditions on a 3D plot. What will be
observed is that the decision volume is solely determined by
the robot’s geometry and mass but not a function of time.
Given the robot’s initial velocity and position, the stability
of our system can now be evaluated in the more general case
of random disturbances.

The remainder of this paper is structured as follows.
Section II covers a brief background on fall avoidance
using the ankle strategy. Section III puts forward the model
that is used for the humanoid for motion in 2D. Section
IV develops the decision volume upon which our system
is based. Section V discusses the control strategy for fall
avoidance in 2D. Section VI presents the experiments and
corresponding results of the fall avoidance scheme applied
on our simulated humanoid as well as on a real humanoid
robot. Finally Section VII concludes the paper and indicates
the direction of our future work.

II. ANKLE STRATEGY IN 1D

A bipedal robot is inherently unstable by nature. In its
simplest form, we consider that all the humanoid’s limbs
and joints situated above the ankle joint are stiff and model
the humanoid as an inverted pendulum pinned to the ground
via its ankle joint. This model is valid as long as the foot
is flat over the ground and the ankle joint can be controlled



as one would control a joint of a robotic arm. However, a
humanoid is constrained by a limited foot-ground interaction
[13]. As soon as the robot becomes unstable, the foot starts
rotating, the robot loses controllability of the ankle joint, and
the robot eventually falls down.

The stability problem of a humanoid robot consists of
looking into ways in which to keep the states controllable, or
even look into ways that would bring the robot back into a
controllable space. This requires the use of strategies such as
the ankle strategy, the momentum strategy, and the stepping
strategy. In the ankle strategy a human compensates for a
disturbance just like an inverted pendulum does, simply by
providing an ankle torque that counteracts the disturbance
and prevents the fall. Due to the limited foot ground inter-
action, the ankle torque is limited and can only be used as a
preventive falling measure in the case of small disturbances.

The inverted pendulum model of a biped (Fig. 1) was first
pointed out by Hemami et al. [14]. The body as a whole is
treated as a point mass located at the center of mass (CoM)
and only the muscle dynamics at the ankle joint are involved.

Deciding when to apply which fall avoidance strategy
is based on a model that is developed for each strategy,
which is capable of inferring from the current state (e.g.,
angular position and angular velocity) of the humanoid
if it can recover by applying the corresponding strategy.
Stephens [3] was the first to introduce what is known as
decision surfaces for humanoid push recovery strategies. A
decision surface delineates the thresholds (or 2D region if
we consider a 2 DoF robot) beyond which the robot cannot
avoid falling by applying the corresponding fall avoidance
strategy. The procedure to determine the decision surface is
to first consider a disturbance that drives the system to the
border of stability. At this state the CoP reaches the edge
of the foot and T, = —mgd, where ¢ is the distance from
the ankle joint to the edge of the foot (Fig. 1a). The initial
values of # and 6 for which the CoP reaches the edge of the
foot delineate the borders of our decision surface. Jalgha et
al. [5] found this region to be specified as:
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Fig. 1: The inverted pendulum model (left) and the angular
momentum pendulum model (right).
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where f* = ¢%/L and w
the system get beyond this decision surface area the ankle
strategy is no longer capable of preventing the robot from
falling and an alternate solution such as a momentum strategy
is required.

Moving from a 1D to a 2D disturbance requires modeling
the motion of the robot in a 3D, and also to develop a
delimiting region in 3D—which we call decision volume.

Z. Anytime ¢ and 0 of

III. DYNAMIC MODEL IN 3D

Several authors have suggested methods for Modeling and
controlling humanoid robots in 3D. Kajita et al. [15], [16]
introduced the 3D Linear Inverted Pendulum Model (3D-
LIPM) to generate walking patterns for humanoids. This
pendulum (Fig.2) can rotate around both the x-axis and the
y-axis. It possesses a prismatic joint that adds a degree of
freedom for accounting for the robot’s mass. To simplify this
model, the CoM is considered to move along an arbitrary
defined plane, which is described by its normal vector
7i(a, b, —1) and intersects the z-axis at z.. The equation of
the this plane is expressed as

z=ax+by+ z. 2)

In our model, the robot’s CoM is assumed to be con-
strained to move at a constant height z = z. and the normal
vector 7i subsequently reduces to (0,0, —1).

Restricting mass movement to a horizontal plane linearizes
the equations of motion developed in [17] and results in the
following equations

i=dot —1, 3)
Ze mze

g 1

j=2y-—m, o)
Ze mze

where g represents gravitational acceleration, m the pendu-
lum’s mass and 7., 7, the torques across the x-axis and the
y-axis respectively.

IV. DECISION VOLUME

In order to better understand stability for humanoid robots
the concepts of Center of Pressure (CoP) and Zero Moment
point (ZMP) are introduced. CoP is defined as the location

Fig. 2: 3D Linear Inverted Pendulum limited to a horizontal
plane.



where an equivalent ground reaction force under the foot’s
support is represented. ZMP [18] on the other hand is the lo-
cation on the ground where the robot’s inertial, gravitational,
Coriolis, and centrifugal forces are balanced by the reaction
force. The concepts of COP and ZMP are used together in
order to establish the stability of a humanoid. If the ZMP is
inside the foot soles, the COP has to follow the ZMP in order
for the system to be brought back to equilibrium. If the ZMP
position exceeds the foot sole, the robot should take action
(such as the momentum strategy or take a step) in order to
bring the ZMP back inside the region where a reaction force
at the CoP keeps the humanoid from falling down.

In a biped system, all joints are powered and directly
controlled except the contact between the foot and the
ground, which can be considered as a passive joint [19].
Although this virtual joint cannot be directly controlled, it is
affected by the dynamics of the mechanisms above the foot,
which can change the location of the ZMP and thus create a
torque on the passive joint. Equations (5) and (6) present the
relation between the position of the ZMP and its equivalent
torques. The further away the ZMP is located, the greater
the value of its torque.

Ty

Dy = ; )]
mg
-

Py = ——. (6)
mg

Where the ZMP position is limited to the support polygon
of the robot it coincides with the CoP. If the ZMP posi-
tion exceeds the foot sole it is called the fictitious ZMP
(FZMP) [18]. In that case, the CoP remains at the edge of
the sole and the difference between the FZMP and the CoP
creates a tipping moment. To proceed with the development
of the decision volume, (5) and (6) are rearranged for
expressions in 7, and 7., which are then substituted into
(3) and (4)

9.
= (z — pa), (N
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Fig. 3: ZMP for the 3D-LIPM.
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j=—W—py): (®)
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By substituting x = rcosa, y = rsina, p, = p, cosa and

y = prsin« into (7) and (8) and taking the sum of their

squares results in

i=2(r—p), ©)

Zec
The angle o determines the line of action shown in Fig. 3
as the r-axis. The value of « is independent of time and
is determined based on the direction of the push and the
initial velocity vector (7). To cover all points in the xy-
plane, o € [-75; %] and r € | — oo; 00].

When a robot is pushed, it is given an initial velocity ¢
along the r-axis. To decelerate, the difference between the
CoM (r) and ZMP (p,.) must be negative. Fig. 3 shows how
the ZMP affects the pendulum. The torque generated by the
ZMP is replaced by its equivalent force F'. Since the location
of the ZMP is limited to the support polygon, the equivalent
recovery force F' is also limited. This constraint is the basis
for the limits imposed by the decision volume. Solving (9)

results in
1
r(t) )ewt+§(7,0,

where 7y and r( represents the initial position and velocity
respectively.

1 7 7
5 (rot— —pr P e, (10)
w w

For the system to be stable, the coefficient of ¢! in (10)
must be zero. So the stability condition becomes,

ﬁ<m+%<& (11

where 0 and 0, represent the upper and lower bound for the
ZMP across the r-axis, respectively. This inequality is valid
for each angle a. To find the ZMP bounds the intersections
between the vector r and the support polygon are calculated
based on the value of «. Three regions are identified for
positive values of 4, and three for negative values.
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where 0, and §, represent the dimensions of the support
polygon of the robot. Fig. 4 shows the decision volume for
a NAO robot (used in our experiments) with z. = 0.3 m,
6 = 0.105 m, §; = -0.046 m, ¢, = 0.105 m, and
6, =-0.105 m.

An additional limit is added to the decision volume due
to a geometric constraint. In fact, the maximum position the
CoM position can reach is » = z., because it is physically
limited in length. As a result the decision volume will be
reduced to the region shown in Fig 4. This volume shows
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Fig. 4: Decision volume for ankle strategy.

the three states of the robot (xconr, Yoonr, ) Where the ankle
strategy would be successful in returning the humanoid to its
equilibrium position.

V. CONTROL

To control our system we use the Virtual Model Control
VMC, which consists of using virtual mechanical compo-
nents such as springs and dampers in order to compute the
forces and moments required to actuate a robots motors.
For the model in this paper one spring and one damper are
attached to the CoM along each of the z-axis and the y-axis.
The resultant forces of the virtual springs and dampers are

F, = K,z — B,#,
Fy=—-Kyy— Byy.

(14)
(15)
Since these components are virtual, their desired effect is
applied to the robot via the ankles roll and pitch motor
torques.

(16)
(17)

Te = EJZC + mgy

Ty = Fpze — mgx

Fig. 5 shows the trajectory of the CoM mapped onto a
contour plot section of the decision volume corresponding to
given velocity magnitude (). As long as the CoM remains
within this contour plot, the humanoid system can be brought
back to its equilibrium state. In this simulation, the initial
velocity 7 is equal to 0.5m/s, the angle « is 7/4, and
control parameters are K, = K, = 50 and B, = B, = 35.
Through this simulation angle « remains constant, which is
consistent with our previous statement, and the CoM follows
a straight line. Referring to Fig. 5, when the velocity of the
robot is relatively high (top sub-figure, ¢ = Os ) the region
of maneuverability of the robot is relatively small. As the
robot slows down (middle sub-figure, ¢ = 0.0886s) it is less
constrained and has a larger are to maneuver within. Finally,
once the speed is equal to zero (bottom sub-figure) the cross
section of the decision volume becomes equal to the support
polygon of the robot.
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Fig. 5: 3D-LIPM simulation 79 = 0.5m/s and o = 7/4.

In practice, the robot has four motors at the ankles that
need to be actuated—for each foot one for the pitch and
another for the roll. Force sensors below each foot feedback
to the system the current state of the reaction forces on the
ground and weights are assigned based on the distribution of
these forces. The motors are actuated in one of two modes.
In the first mode (Fig. 6, left) both feet of the robot are on the
ground, and the motors are actuated according to the weights
determined above. In the second mode (Fig. 6) only one foot
is in contact with the ground and it is solely responsible for
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Fig. 6: Torque distribution on ankles motors.

supplying the torque required by the VMC.

VI. EXPERIMENTS AND RESULTS

To prove the validity of our proposed all-directional fall
avoidance system several experiment are performed on a
simulated as well as a real robot. The NAO humanoid
robot [20] is used for both the simulations—implemented
on Webots [21], [22]—as well as the live robot tests. NAO
is a 58cm humanoid that features 25 degrees of freedom. It is
equipped with a large array of sensors including encoders, an
IMU (inertial measurement unit), cameras, and force sensors
under the feet. Although the robot does not support torque
control, the allowable torque can be fixed in order to emulate
1t.

A y, A e = 1 - ]
- wory, e - ".f_“ﬁ‘ g..k, = e 3
r S e n e S S

Fig. 7: Webots simulation (25 N of force at an angle of 7/4).

Fig. 7 shows snapshots of a Webots simulation, where
the amplitude of the force is 25 N imparted at an angle of
/4. The force was applied at a height of 0.4 m from the
ground with a duration of 0.1 sec. In Fig. 8§ the CoM the
traced for the same disturbance as in Fig.7 and reaches a
maximum of 0.033 m in the x direction, and 0.017 m in the
y direction. The trajectory is not a straight line as in Fig. 5.
When the robot is pushed, the CoM starts moving along a
straight line. Reaching the edge, the foot has partially lost its
contact with the ground and this causes a small modification
in the trajectory. Fig. 9 show the variation of 7 in function
of time. The figure shows how when the robot is pushed the
velocity 7 increases to a maximum value of 0.28 m/s and
then the ankle strategy decelerates the robot and returns it to
an equilibrium state—albeit with some oscillations. Fig. 10
shows the decision volume, where x, y and r are plotted.
The decision volume agrees with the fact that the robot can
recover from the applied disturbance since the states do not
exit the decision volume at any point in time.

Finally in Fig. 11 the ankle strategy is implemented on
the real NAO humanoid. The robot is struck by a ball, which
imparts a disturbance force of 46.5 N as measured by a force
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Fig. 8: CoM trajectory for simulated NAO struck by 25 N
force for 0.1 sec.

sensor. By examining these snapshots closely, the robot’s left
foot partially loses contact with the ground, at which time it
applies the second mode of recovery mentioned in Section
V. When the robot is pushed by the ball, the CoM moves
0.056 m to the front and 0.02 m to the right as shown in Fig.
12 and Fig. 13 respectively. These values are consistent with
the ball direction, since the ball is coming from the back left
side.

VII. CONCLUSIONS AND FUTURE WORK

To conclude, the decision volume was successful in de-
termining at which states the ankle strategy is sufficient to
recover from a sudden disturbance while standing still. Also,
the robot has no prior knowledge of the amplitudes and
directions of the push. Both of the ankles are actuated in
the roll and pitch directions. The robot is capable each time
to restore its balance and return to its initial equilibrium
position.

The next step will be to develop a decision volume for
the hip strategy, where hips are used to rotate robot’s torso
and create a torque to restore balance. Using this additional
strategy the humanoid should be capable of recovering from
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Fig. 9: 7 in function of time.
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Fig. 10: Decision volume for Webots simulation, arrow
indicates robot state evolution throughout recovery.

Fig. 11: Ankle strategy applied to real robot.

larger disturbances. However, since hips cannot accelerate
indefinitely, this also creates constraints delimiting an aug-
mented decision volume.
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