
  

 

Abstract—We are examining whether robust behavioral laws, 

initially designed to describe sensorimotor control of the upper 

extremities, can also describe lower extremity movements. 

Herein, we present our initial results of our research on 

measuring ankle reaction time (RT). We show that RT 

measured in ankle dorsiflexion (DP) and inversion-eversion 

(IE) of 7 healthy young subjects followed a γ distribution, a 

typical finding in the upper limb response modalities. We 

propose that the low-order statistics (mean and variance) of the 

best-fit γ function can be used to concatenate RT across 

subjects with similar performance and create super-subjects 

(SS). We then show that the most widely used model of RT 

cognitive processes, the Ratcliff diffusion model, is adequate to 

describe ankle RT in an SS.  The combination of experimental 

data analysis with diffusion modeling of ankle RT proposed 

that at least two cognitive components of RT are accounted for 

a difference in mean RT observed between DP and IE, namely 

the speed of information accumulation and the non-decision 

time that includes, among others, the time for motor response 

encoding and execution. These results show a great potential to 

inform our adaptive assist-as-needed robotic therapy delivered 

to the lower limbs of children with Cerebral Palsy.   

I. INTRODUCTION 

INCE Hebb’s theoretical work [1] on activity-dependent 

plasticity and its experimental support [2, 3], the 

recognition that the adult brain undergoes plastic changes 

has become mainstream and spurred experiments on motor 

learning  and recovery in patients with neurological injury. 

We and others reasoned that the motor experience in 

physical therapy as delivered by clinicians could be 

replicated and perhaps augmented by robotic technology [4]. 

Accumulated evidence for its effectiveness led the American 

Heart Association to include endorsements for upper 

extremity robotic therapy in their guidelines for the standard 

of post-stroke treatment [5].  At least for stroke, outcomes 
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were most positive when robotic systems employed 

interactive approaches, such as our performance-based 

adaptive scheme [6, 7]. Our  performance-based algorithm 

explores concepts of motor learning including knowledge of 

results (e.g., hitting the targets) and knowledge of 

performance (e.g., in every fifth repetition of the game, 

performance is provided in terms of self-initiation movement 

counts, aiming accuracy, speed and deviation, amount of 

robotic help power, smoothness of movement, etc.) [8]. But 

to our knowledge, little is known of the design principles 

applicable to lower limb rehabilitation, in general, and the 

sensorimotor control of the ankle, in particular. We have 

recently shown that Fitts’ law applies also to human ankle 

movements [9]. We now seek to examine ankle reaction 

time (RT) and explore its potential to use it as a tool for 

assessing deficiencies in sensorimotor control.   

RT has been found to be influenced by many exogenous 

factors to the brain, including the type of stimulus, (e.g., 

auditory as opposed to visual [10]), stimulus intensity [11] 

and position in the visual field [12], as well as spatial 

accuracy constraints [13-15]. In addition to extrinsic, many 

of the brain’s intrinsic factors, often associated with a 

diverse set of neurological diseases, affect RT. Significant 

delays in RT measures have been found in basal ganglia 

disorders such as Parkinson’s disease (PD) [16-18] and 

Huntington’s disease [19] and are commonly related to a 

deficit in motor planning [20, 21]. Mounting evidence is also 

linking RT to structural and functional brain characteristics: 

Increased RT variability is found to be indicative of white 

matter degradation [22, 23], disconnectivity in associate 

pathways [24], impaired top-down executive and attentional 

control processes [25], cognitive disorder, neurotransmitter 

dysfunction, fatigue, and stress [26]. Interestingly, impaired 

RTs appear responsive to intervention: RT has been used to 

quantify restoration of motor functions according to given 

cognitive contexts in PD patients treated with Deep Brain 

Stimulation [27]. In addition, exercise and practice improve 

simple and choice RT in both young and older adults [28-

31]. In rehabilitation robotics, RTs can also be used to assess 

patients’ attention and help increase their participation 

during therapeutic sessions; this appears to be of critical 

importance in a therapeutic intervention, particularly for the 

pediatric population which is easily distracted.  

We have recently completed the development of the 

pediatric anklebot, a robotic device to deliver therapy to the 

ankle of children aged 5-8 y.o [7, 8, 32].  Our clinical target 

is Cerebral Palsy (CP), the most common developmental 

motor disability of children that currently affects at least 2 in 

1,000 children born in the United States; numbers are 
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expected to grow worldwide with the increased survival of 

pre-term babies. Three devices were deployed and are in 

pilot testing with children with CP at Blythedale Children’s 

Hospital (Valhalla, NY), Bambino Gesu Children’s Hospital 

(Rome, Italy), and Riley Children’s Hospital (Indianapolis, 

IN). We chose to measure ankle RT first on the adult 

population where we can study it reliably; we will then 

refine our sensorimotor paradigms, as needed, for children. 

In this paper, we report our RT analysis from 7 healthy adult 

subjects that used our adult anklebot and present a 

simulation study of the cognitive processes affecting RT, 

using the Ratcliff diffusion model. 

A. The Ratcliff Diffusion Model 

The Ratcliff diffusion model (RDM) [33, 34] is a 

sequential sampling model of the cognitive processes 

involved in simple (single stage) and fast (average RT less 

than 1.5 s) 2-choice decisions. It breaks down accuracy and 

RT distributions into distinct processing components by 

separating the quality of evidence entering the decision from 

the decision criteria and from other, non-decision processes 

such as encoding the stimulus and response execution.  A 

decision is made once sufficient evidence toward a choice 

has been accumulated. Accumulation is governed by two 

distinct processes - namely, a tendency to drift toward either 

of the boundaries and a stochastic component in the step size 

and direction on the decision dimension. The model divides 

the decision process into three primary processing 

components: the non-decision time that includes stimulus 

encoding, memory access, and response execution (Ter); the 

criteria used to make a decision (0 and a, starting at a point 

z); the quality of information extracted from stimuli (the drift 

rate, v) – and estimates of the trial-to-trial variability in these 

components. The variability parameters model participants’ 

inability to set parameters at identical values from trial to 

trial: st is the range in Ter, sz is the range of the starting point, 

and η is the standard deviation in the mean drift rate. All 

model components combined together produce traditional 

measures of processing speed, as well as predictions for 

accuracy and RT distributions for correct and error 

responses [34, 35]. For the mathematical details of the 

diffusion model, see [35]. 

II. METHODS 

A. Subjects 

Seven healthy young adults were enrolled into this study. 

Subjects were Caucasian, post-doctoral and graduate 

students at the Massachusetts Institute of Technology (1 

female). All subjects had normal or corrected-to-normal 

vision and were right-foot dominant according to their 

preferential use of the foot during daily activities such as 

kicking a ball. Participants had no reported history of 

traumas or neuropathies to the lower limbs. All subjects 

were naive to the task upon enrollment and gave written 

informed consent according to the procedure approved by 

the Massachusetts Institute of Technology Committee on the 

Use of Humans as Experimental Subjects. 

B. Experimental Apparatus  

RT was measured for dorsi-plantarflexion (DP) and 

inversion-eversion (IE) ankle pointing movements using a 

highly back-drivable, wearable Anklebot robot (Interactive 

Motion Technologies, Watertown, MA). The robot is a low-

friction, backdrivable device with intrinsically low 

mechanical impedance that allows the maximum range of 

motion required for the typical gait of healthy or 

pathological subjects in all three degrees-of-freedom of the 

foot relative to the shank during walking overground or on a 

treadmill [36, 37]. Subjects wore a modified shoe and a knee 

brace, to which the robot was attached. Subjects were seated 

and the knee brace was securely fastened to the chair to fully 

support the weight of the robot and to ensure that 

measurements were made in a repeatable posture. The chair 

was placed 1.5 m away from a 60-inch 1080p (Full HD), 120 

Hz, 1024 x 768 Liquid Crystal TV (Sharp LC60L, Sharp 

Electronics Corporation) which was positioned at eye level 

(Fig. 1). For this study, the robot acted as a passive device 

and recorded simultaneously the DP and IE positions. Ankle 

position kinematics, with respect to the zero-angle (neutral 

position), were recorded at 200 Hz sampling frequency and 

converted to screen pixels for visualization. Visual feedback 

was given online to the subjects as a moving circular cursor 

(d = 23 pixels). A DP (IE) movement of the ankle moved the 

cursor vertically (horizontally); hence the cursor moved in a 

2D coordinate system with the origin corresponding to the 

ankle’s neutral position defined as the sole being at a right 

angle to the tibia (see Fig. 1 in [9]). Visualization software 

was written in TCL/TK and run on a PC equipped with 

Ubuntu-Xenomai operating system. 

 
Fig. 1.  Experimental Setup. Irrelevant background has been removed. 
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C. Experimental Protocol 

The main manipulation in both experiments was direction 

of movement. Stimuli were black rectangles displayed 

against a white background on the monitor. The coordinates 

of the target centers were (0, ±s) and (±s, 0) in the coordinate 

system defined above, for DP and IE directions, 

respectively.  Parameter s remained fixed across targets and 

corresponded to 0.2 rads (12°) in ankle rotation for both 

directions, within a comfortable range of motion for the 

ankle. Targets disappeared only when the cursor 

representing the ankle pointing movement landed inside the 

rectangle. An outbound target – a target away from the 

origin – was followed by an inbound target – a target 

centered in the origin – and vice versa. Outbound targets 

were equiprobable. The interstimulus interval between 

outbound target presentations ranged between 800 ms and 

1200 ms. 

Subjects were instructed to point with their ankle “as fast 

and accurately as possible.” There were 2 blocks, one in DP 

and the other in IE directions, each having 180 pointing 

movements toward targets constrained to 1D (90 outbound, 

2-choice tasks and 90 inbound, simple choice tasks, per 

block). The presentation order of the blocks was 

counterbalanced across participants. Participants were 

allowed to take a short rest break (1 min) between the two 

blocks. 

D. Kinematic Analysis 

RT was measured as the temporal distance between the 

onset of a stimulus and ankle movement as defined by a 

velocity threshold of 5% of the peak speed [38, 39]. We 

excluded all non-discrete movements, i.e., those in which the 

ankle velocity at the onset of the target was larger than 0.001 

rad/s. For each movement, we estimated the angle of the 

instantaneous velocity vector (approximated by the ankle 

velocity in the first 15 ms [3 samples] of the movement), 

𝑎𝑣 = tan−1 (
𝑣𝐷𝑃

𝑣𝐼𝐸
), where 𝑣𝐷𝑃 (𝑣𝐼𝐸) was the velocity in the 

DP (IE) direction. Error choices were defined as initial ankle 

movements away from the target. They were followed by a 

prominent movement correction, either as a complete stop or 

an abrupt change in the initial trajectory, easily identifiable 

by |𝑎𝑣| > 𝜋 4⁄ , assuming 𝑎𝑣 = 0 as the optimal (straight to 

the target) response. 

E. Model Fitting 

We used the Diffusion Model Analysis Toolbox to fit the 

data [40, 41]. We fit the RDM to the data using the chi-

square (χ2) method for its best balance between estimation 

accuracy (i.e., smallest variability in parameter estimates) 

and robustness to contaminants RTs [35]. Briefly, for each 

condition, predicted and experimental RTs were grouped 

into five bins, separately for correct and error responses. The 

bins were defined by five quintile RTs, namely, .1, .3, .5, .7, 

and .9. We tested the model on its ability to predict the 

cumulative probability of a response up to each of the RT 

quintiles. That gave the expected responses between 

adjacent quintiles and, by multiplying with the total number 

of observations, the expected frequency per bin. The 

expected and observed frequencies of response were 

compared, and the sums of squared differences were 

summed over bins to produce a χ2 statistic for all conditions. 

We employed this figure as the objective function to be 

minimized during estimation using a SIMPLEX fitting 

algorithm [42].  

In total, parameters for 8 models were estimated. 

Specifically, we experimented on the “no effect” model (all 

parameters constrained to be equal across conditions); 

models where a single parameter was allowed to vary across 

conditions, namely a, v and Ter; models where two free 

parameters could vary across conditions, namely {a, v}, {v, 

Ter} and {Ter, a}; and a model with all three parameters {a, 

v, Ter} allowed to be free. Initial parameter estimations were 

done using a pre-implemented algorithm (EZDIFF 

autogeneration). 

To compare models with different numbers of parameters, 

we combined two statistical criteria. We used the Bayes 

Information criterion [43], defined as BIC = 𝑝 ln 𝑛 − 2 ln 𝐿, 

where 𝑝 is the number of parameters in the model, 𝑛 is the 

sample size, and 𝐿 is  the maximized value of the likelihood 

function for the estimated mode [44]. BIC provides a penalty 

for the number of parameters in a model. In accord with 

Raftery [45], an absolute difference between two models’ 

BIC values of [0-2], [2-6], [7-10], and >10 indicated a weak 

(p = [0.5-0.75]), positive (p = [0.75, 0.95]), strong (p = [0.95 

– 0.99]) and very strong (p > 0.99) evidence of difference, 

respectively. To ensure that we did not overfit our data by 

supporting the equivalency of models, we additionally 

estimated the bias-corrected version of the Akaike 

Information Criterion (AICC) [46]; it is defined as AICC =
AIC + 2𝑝(𝑛 + 1) (𝑛 − 𝑝 − 1⁄ ), where AIC = 2𝑝 − 2 ln 𝐿 

[47]. We regarded models with AICC within 2 of the 

minimum AICC as having substantial relative support [48]. 

As discussed in Section III, we selected a mixture of models 

proposed by the different criteria to make inferences. 

To obtain quintile RTs, there must be at least 5 responses 

per condition. Given the low error-rates [(3.0 ± 2.5) % for 

DP and (5.6 ± 4.7) % for IE movements], we did not have 

enough data to obtain the quintiles for error responses for 

most of the subjects. A possible solution is to create a 

number of “super-subjects” (SS) by combining the data from 

subjects with the same performance. Collapsing data across 

participants with similar performance to increase the data 

base for the RDM parameter estimation has been 

successfully applied before [49]. Model fits can then be 

performed to SS. 

F. Parameter Estimation 

The parameters of interest in the present study 

corresponded to drift rate (v), boundary separation (a), and 

non-decision components (Ter). The other parameters were 

important during model fitting but did not apply to our main 

hypotheses. Furthermore, visual inspection showed that none 

of them varied meaningfully across movement directions. 

We estimated the model’s parameters by fitting the RDM to 

SS data (outbound movements). 
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III. RESULTS 

For each subject, we estimated the probability density 

function (PDF) for the RT measured in DP and IE 

movements, separately. We then fit a γ- distribution on the 

empirical PDF and calculated the fit statistics (Fig. 2). 

Interestingly, the mean RT for DP was found to be 

consistently lower than the mean RT for IE. As all subjects 

had similar (and very low) error percentages, we used the 

estimated mean and variance of the best fit γ-distribution to 

cluster the subjects into groups of similar performance (Fig. 

3). Subjects 2, 3, 5 and 6 exhibited similar RT distributions 

and were grouped to form a SS with the remaining subjects 

forming a second group of participants. The formed SS had 

mean correct RT: 385 ms and 450 ms, probability correct: 

0.96 and 0.93, for DP and IE, respectively.  

We fit the RD models to the SS data for the two movement 

directions and combined the information from BIC and 

AICc to select our best fit models (Table I). Since BIC is 

known to penalize model complexity more heavily than the 

AICC and AICC is better in situations when a false negative 

finding would be considered more misleading than a false 

positive, we combined the two statistical criteria to narrow 

the number of possible models that best fit the data. 

Specifically, the BIC and AICC estimates were used to 

define the low and the upper end of the best-fit range of 

models, respectively.  Hence, for the SS, the best fit model 

included the {v, Ter} (proposed by the BIC) and the {a, v, 

Ter} models (proposed by the AICC), suggesting that at least 

two cognitive components of RT vary between DP and IE 

ankle movements. Importantly, the free parameters of the 

best-fit models varied consistently across conditions: 

comparing DP to IE movements, v decreased and Ter 

increased. The boundary parameter, a, did not change 

significantly across movement directions, as depicted by the 

{a, v, Ter} model, for this SS.  

In Fig. 4, the quality of the fits and the parameter estimates 

for the {a, v, Ter} model are shown. In the first row, quintile 

probability plots comparing actual data to theoretical fits of 

the RDM are shown for DP and IE. The probabilities of 

correct and erroneous responses and the shapes of the RT 

distributions for both real and simulated responses are 

shown in the second row. These fits show that the RD model  

captured the changes in RT and accuracy as a function of 

ankle movement direction for both correct and erroneous 

responses. Thus, the parameter values were very likely to 

 
Fig. 2.  Best fit γ-distributions (black lines) of the probability density function (PDF) of the RT, for DP (left) and IE (right) movement per subject, with 
the R2 value and the estimated shape, a, and scale, b, parameters (1st title line) as well as the mean, μ, and variance, Var (2nd title line). 

 

 
Fig. 3.  Clustering of the seven subjects with respect to the estimated 

mean, μ, and variance, σ2, of the best fit γ distribution, shown in Fig. 

2. Subjects marked with a cross (+) and an asterisk (*) denote two 
different clusters of responses. 
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Fig. 4.  Diffusion model fits to the RT distributions for a super-subject. 

The {a, v, Ter} model is shown. Model allowed boundary separation 

(a), non-decision time (Ter) and drift rate, v, to vary across conditions 
(DP and IE). First row: Quintile probability functions; The x-crosses 

(x) in both plots represent the quintiles of the empirical RT 

distributions. The circles represent the fits of the diffusion model. 

Second row: The empirical (solid black) and predicted (dotted gray) 

CDF for correct responses, in DP and IE. Third row: The estimated 

parameter values as a function of condition and their corresponding 
error bars as estimates of the standard error of estimation of the 

parameters calculated with the delta method. 

represent the behavior of the components of processing in 

the experiment. The last row of Fig. 4 shows the estimated 

parameter values as a function of movement direction and  

their corresponding error bars as estimates of the standard 

error of estimation of the parameters calculated with the 

delta method [50]. 

IV. DISCUSSION & CONCLUSION 

In this article, we measured RT in the ankle using a robotic 

device. Our analysis of the perceptual decision making was 

done in an experimental paradigm in which subjects used 

their ankle to respond to equiprobable on-screen targets 

presentation. We found that RT follows a γ-distribution. We 

used the parameters of the γ-function that best fit on each 

subject’s RT to quantitatively assess subjects that responded 

similarly in both DP and IE directions. We used our 

proposed clustering approach to group RT from similar 

subjects and formed a SS. Average (usually vincentized) 

data, often accounted for a non-accurate representation of 

the individual subjects, have been used in the RDM fitting 

quite successfully. Specifically, in more than a dozen large 

studies with 30 to 40 subjects per group, all parameter values 

obtained from fitting the model to data averaged over 

subjects were found close (within 1 or 2 SD of each other) to 

the parameter values obtained from averaging the parameters 

resulting from fits of the model to the data from individual 

subjects [51-53]. 

We applied the RDM to ankle RT and tested whether it 

could successfully simulate the 2-alternative forced choice 

tasks. We examined a range of architectural features that the 

RDM could take and tried to determine which would best fit 

the SS data. Statistical analyses of different models 

narrowed the range of a “best-fit” set of models for which 

the prediction quality could no longer be discerned visually. 

A combination of best-fit statistics proposed {v, Ter} and {a, 

v, Ter} as the best models of the SS data. Model parameter 

estimates from these models were then interpreted as 

meaningful components of cognitive processing to explain 

performance differences between DP and IE. In both 

models, v and Ter were found to differ significantly between 

movement directions. The RDM strongly suggested that 

there is an important difference at least in the motor 

response between the talocrural (upper ankle) joint, which 

permits DP movement,  and the subtalar (lower ankle)  joint, 

which permits IE movement. A detailed understanding of 

processing similarities and differences associated with 

disorders of the motor system across joints and modalities, 

could evaluate the response to a therapeutic intervention and 

potentially lead to better assessment of neurological diseases 

that originate in the brain but affect the periphery. Our 

findings strongly support further exploration of RT in the 

ankle as a neuro-rehabilitation tool. 
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