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Abstract— Cerebrovascular accident or stroke is one of the 
major brain impairments that affects numerous people 
globally. After a unilateral stroke, sensory motor damages 
contralateral to the brain lesion occur in many patients. As a 
result, gait remains impaired and asymmetric. This paper 
describes and simulates a novel closed loop algorithm designed 
for the control of a lower limb exoskeleton for post-stroke 
rehabilitation. The algorithm has been developed to control a 
lower limb exoskeleton including actuators for the hip and knee 
joints, and feedback sensors for the measure of joint angular 
excursions. It has been designed to control and correct the gait 
cycle of the affected leg using kinematics information from the 
unaffected one. In particular, a probabilistic particle filter like 
algorithm has been used at the top-level control to modulate 
gait velocity and the joint angular excursions. Simulation 
results show that the algorithm is able to correct and control 
velocity of the affected side restoring phase synchronization 
between the legs. 

I. INTRODUCTION 

EMIPARESIS after an unilateral stroke is a debilitating 
condition that globally affects numerous people every 

year. The loss of lower limb function is a traumatic outcome: 
it compromises individual autonomy and activities with a 
consequent reduction of life quality.  
   Rehabilitative intervention guides motor recovery, and 
enhances the abilities of the subjects resulting in an increase 
of quality of life. For post-stroke subjects, it is based on 
promoting and guiding the neuroplasticity in the cortex by 
using motor tasks in order to favor a functional recovery of 
gait, called the bottom-up approach [1-4]. Together with the 
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traditional rehabilitation techniques, other innovative 
treatments have been introduced in the last few decades [1, 
3, 5-7]. Among these methods, those employing non-
invasive stimulation devices for muscles or brain have 
shown promising results for control of the affected limb. 
However, they are not suitable for long-term intervention or 
independent usage by patients. Alternatively, robotic 
rehabilitative devices provide a safe, accurate, intensive and 
prolonged motor therapy. In particular, robotic exoskeletons 
designed to deliver automated gait therapy by assisting the 
impaired subjects have shown encouraging results [1, 8-14].  
     This paper is concerned with the development and 
validation of an algorithm for control of a lower limb robotic 
exoskeleton that can predict the patient’s intention to change 
velocity of walking. Development of advanced adaptive 
controls is important to improve the effectiveness of 
rehabilitative devices, since the performance of robotic 
exoskeletons depends on their control algorithms. Many 
such algorithms use minimization of state errors from 
previous iterations to control the gait [15], impedance 
control [16], and haptic feedback [17, 18]. However, most 
methods have problems adapting to patients walking with 
non-physiological gaits [16].  

Gait models based on Central Pattern Generator (CPG) 
networks can generate and maintain robust rhythmic 
movements without continuous higher level control [19]. It 
has been hypothesized that CPGs constitute an important 
part in the neural pathway that generates and maintains a 
stable limit cycle behavior in bipedal gait [20-22]. 

In this study, we introduce a novel gait control algorithm 
and validate it by using data from ten hemiplegic stroke 
patients. The algorithm is inspired by the current holistic 
understanding of CPG networks in vertebrates. In particular, 
we use artificial neural networks with feedback to 
implement the CPG, and one-dimensional Self-Organizing 
Map (SOM) to encode and maintain a repertoire of pre-
learnt basis gait behaviors [23]. Finally, the algorithm 
includes a probability based particle filter module for 
intention based velocity control. The particle filter is a 
probabilistic model that has been applied in robotic systems 
for localization [24, 25]. In this paper we use probabilities 
instead of particles and perform localization using SOM 
nodes for velocity control by the patient. We also show an 
analysis for the importance of promoting supraspinal 
initiated movements to gain complete functional recovery of 
the affected muscles and neural cells [26]. It is challenging 
to accurately predict a patient’s intention to alter gait 
characteristics (gait transition, turning, velocity). 
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Electromyographic (EMG) signals cannot be used 
effectively in this case [27], hence we use a force based 
model to simulate velocity change prediction. We show how 
a probabilistic state machine is helpful for this problem.   

II. METHODS 

A. Data Collection 

Normal patient data was obtained from the gait laboratory 
at the National University of Singapore (NUS) using a Vicon 
system. Markers were placed on the lower limbs at 
appropriate positions to generate kinematics data. Stroke 
data was collected at the Neuro-rehabilitation Unit Ospedale 
Cisanello Pisa, Italy. This clinical data is from 10 informed 
and willing patients (2 females and 8 males; Fugl-Meyer 
coefficients between 125 and 216).  

B. Gait Generation  

In this model, gait is driven by using a pre-learnt basis 
pattern. The normative training data were obtained from the 
gait laboratory in NUS. 	

The SOM was trained on discrete values ranging from 1 
to 198, using simple first order interpolation at non-integral 
points to make it continuous for controlling the joint velocity 
of exoskeleton. The following algorithm describes the 
procedure used for interpolation:  

 
Variables: 
ሺܽଵ, ܽଶ, ሻݐ → The hip-knee-time triplet vector, which 
describes the state of the leg 
ݎ → The time steps of the algorithm, which represents the 
relative speed at which the user walks (belief value) 
Algorithm I: 
1: Given an observed state ሺܽଵ, ܽଶ,  ሻ, find the nearest SOMݐ
node → ݊ and its distance from the observed state ݀௡. 
2: Find the distances of the ሺ݊ ൅ 1ሻ݄ݐ SOM node → ሺ݀௡ାଵሻ 
and the ሺ݊ െ 1ሻ݄ݐ SOM node → ሺ݀௡ିଵሻ from ሺܽଵ, ܽଶ,  .ሻݐ
3: ݀௠௜௡ ൌ ݉݅݊	ሺ݀௡ିଵ, ݀௡ାଵሻ, and index=SOM node value at 
lesser distance ሺ݊ ൅ ݊	ݎ݋	1 െ 1ሻ. 
4: The final SOM index of the observed state is given as: 
 

ܵሺݐሻ ൌ
ݔ݁݀݊݅ ∗ ݀௡ ൅ ݊ ∗ ݀௠௜௡

݀௡ ൅ ݀௠௜௡
																									ሺ1ሻ 

 

C. CPG and Repertoire Model 

The CPG was designed as a feedforward neural network that 
interpolates the ሺݐ ൅  ሻ value at each step to its equivalentݎ
SOM node. This output was further processed by another 
neural network to produce a final output in vector format 
given as → ሺܽ1௧ୀ௡, ܽ2௧ୀ௡, ݐ ൌ ݊ሻ. This neural network is 
compactly represented as : 
 

݁݀݋݊ ൌ ݐଵሺݐ݁݊ ൅  ሻݎ
ሾܽ1, ܽ2, ݐ ൅ ሿݎ ൌ  ሺ2ሻ																						ሻ݁݀݋ଶሺ݊ݐ݁݊

ݐ ∈ ሾ1,198ሿ	 
 
ݐis the current SOM node the CPG is at time ሺ ݁݀݋݊ ൅  ݎ ,ሻݎ
is the belief value output by the particle filter based velocity 
control unit (see section II-E). In Eqn. 2, ݎ ൌ 1 corresponds 
to normal gait velocity. 
 ଵ is a feedforward neural network that outputs the currentݐ݁݊
SOM node which is further interpolated by ݊݁ݐଶ to calculate 
the output vector values at ሺݐ ൅  .ሻݎ

A Self-Organizing Map with 198 nodes was trained on 
ሺܽ1, ܽ2,  ሻ values to generate the one dimensionalݐ
representation. Two SOMs, one each  for the left and the 
right leg were trained. 

D. Angular Constraints 

To constrain gait output in the presence of  measurement 
noise, a weighting factor ݓ was used to limit its effect as : 
 

௡௘௪ݓ ൌ ሼݓ௢௟ௗ ∗ ܿሽ ൅ ሼሺ1 െ ܿሻ ∗  ሺ3ሻ																			ௗሽݓ
 

where, ݓ௢௟ௗ is the weighting factor value in the previous 
time sample ; ݓ௡௘௪ is the weight factor value in the actual 
time sample, and ݓௗ is the disturbance weighting factor 
value, calculated as the ratio of the new and old hip joint 
angle values, and ݓௗ is updated at the next time sample as: 
ௗݓ →  ௢௟ௗݓ

In equation 3,  values of ܿ are in the closed interval from 0 
to 1. A high c value permits our approach to be robust to 
measurement noise but with a cost of decreased sensitivity to 
subject movements. We used a low value of 0.2. 

This weighting factor value was computed only in the 
healthy leg and its value was used for the affected leg. Thus, 
the affected leg is essentially the follower of the healthy leg. 
At time ሺݐ ൅  ሻ, the output vector for healthy leg isݎ
calculated as ܱ௧ା௥ and the effective output vector is updated 
as ܱ௧ା௥ → ܱ௧ା௥ ∗  .௡௘௪ݓ

 

E. Velocity Control using Probability Based Particle Filter 

The goal of the particle filter is to finely modulate the 
walking speed following the user’s intention , by considering 
the deviations from the predicted normal gait. Please note 
that we use the terms particle filter and probabilistic machine 
interchangeably throughout the paper to refer to the 
modified particle filter algorithm used. In the algorithm used 
for gait velocity prediction, the state of a leg is described by 
a1, a2 and t. Variable t represents the time normalized by T, 
where T is the time period of one full gait cycle at normal 

 
 
Fig. 1.  A comprehensive view of the algorithm used to generate and
maintain the locomotion. d is the small disturbance factor induced into the
system by the environment, r is the time rate as perceived by the user and t
is the base time generated by the time tracker. Simply stated, the
algorithm iterates on values as decided by the current belief value. 

651



  

speed.  The gait data in one dimensional form, as 
represented by the SOM indices is used to compute the 
velocity. The index of the SOM weights is represented at 
time t with ܵሺݐሻ, where ܵሺݐሻ is a continuous scalar variable 
varying from 1 to ܰ, and ܰ	 is the total number of neurons 
used in the SOM (ܰ ൌ 198). ܵሺݐሻ is obtained through the 
leg state tuple - ሺܽଵ, ܽଶ,  ሻ, using algorithm I. The index ofݐ
the state observed at time ݐ ൅ 1 could be either higher or 
lower than ܵሺݐ ൅ 1ሻ, as depicted by lines AC and AD as 
shown in Fig. 2. In the case when the observed state at time 
ݐ ൅ 1 gives an index ܱሺݐ ൅ 1ሻ , which is lower than ܤ ↔
ܵሺݐ ൅ 1ሻ, the relative time step is obtained by drawing a line 
parallel to the time axis and passing through ܱሺݐ ൅ 1ሻ	ݎ݋	ܦ. 
In Fig. 2, t+a is the time point when this line intersects the 
curve. The new predicted speed is given by ܽ. This value 
that is also related to the probabilities contained within the 
algorithm. In the same manner, if ܱሺݐ ൅ 1ሻ is greater than 
ܵሺݐ ൅ 1ሻ or C, the new time step is ܾ. This value is higher 
than ݎ ൌ 1, indicating a higher walking speed. Thus, at each 
time instance, the system variables include ݎ, the current 
predicted speed or the current rate at which the person is 
walking, and state of the leg at time t.  For each observation,  
 is updated by the particle filter like system. Each state of ݎ
the particle filter is indicated by a number ܴሺ݅ሻ, which is 
representative of the relative rate at that node. A probability 
ܲሺ݅ሻ is associated to each state, such that the sum of 
transition probabilities is 1. When the system is initialized, 
all the probabilities lie within the state in the middle, 
characterized by an	ݎ value of 1. The transition probability 
௜ܶ௝ of ௜ܵ (݄݅ݐ state) to ௝ܵ is given as:  

 

௜ܶ௝ ൌ
ܥ

൫1 ൅ ሺ݅ݏܾܽ െ ݆ሻ൯
ଶ 																											ሺ4ሻ 

 
By using a transformation matrix based on the Gaussian 

probability propagation, the equation 4 becomes: 
 

௜ܶ௝ ൌ .ܥ eሺି
ሺ௜ି௝ሻమ
஽ ሻ																																		ሺ5ሻ 

 

Parameter ܦ is the variance, and ܥ is fixed for a particular 
state ௜ܵ. ܥ can be obtained by normalizing the probabilities. 

As with particle filter systems, the transition probability 
matrix is used to update the probabilities ܲሺ݅ሻ, and by 
adding the new observation ܱሺݐ ൅ 1ሻ, to find the 
instantaneous rate ݎ (belief value as defined earlier, also 
called the relative user velocity). The updated P(i) is 
obtained by centering a Gaussian on ݎ and multiplying the 
values thus generated by the function at the state of the 
particle filters with P(i). The new prediction after 
normalization is computed by the following equation: 
 

ݎ ൌ෍ܲሺ݅ሻܴሺ݅ሻ
ெ

௜ୀଵ

																																		ሺ6ሻ 

 
This value is the new time step or rate in the algorithm. At 

the next iteration, the observation at time t+2 is then 
represented by ܱሺݐ ൅  .value was initially one ݎ ሻ, since theݎ
Similarly, the straight line between ܵሺݐሻ and ܵሺݐ ൅ 1ሻ is 
replaced by ܵሺݐ ൅ ܽሻ and ܵሺݐ ൅ ܽ ൅  ሻ. This loop is iteratedݎ
after each observation, and the probabilities and transition 
matrix are updated before each transition. A point to be 
noted is that the observation frequency does not change, and 
therefore, the system is always observed at discrete intervals 
of ௦ܶ. In addition, ݎ represents an overall phase velocity	 of 
the system, as the algorithm moves from ݐ to ݐ ൅  in each ݎ
iteration. Finally, a summary of this algorithm is presented 
below: 

 
Variables: 
ሺܣ, ሻܤ → The lower and upper time limit for the 
observations. Initially, ܣ → ܤ ,1 → 2, and ݎ → 1. The 
relationship between these value is ܤ ൌ ܣ ൅  .ݎ
ܴሺ݅ሻ →	Describes the relative rate of the ݄݅ݐ state in the 
particle filter system. 
ܲሺ݅ሻ → Set of probabilities for the ith state of the system. 
Initially, ܲሺ݅ሻ → ሺ݅ሻܴ	݁ݎ݄݁ݓ	݅	ݎ݋݂	1 → 1. 
௜ܶ௝ → Probability transition matrix 

Algorithm II: 
1: ܵሺܣሻ is the SOM index pertaining to the previous 
observation, at time t, and ܵሺܣ ൅  ሻ (at time t+1) isݎ
obtained by  extrapolation using the slope at A. 
2: ܱሺܣ ൅  ሻ is the observation at time t+1, which maps toݎ
the relative time ܽ. 
3: The transition matrix ௜ܶ௝ is used to update the 
probabilities. 
4: A Gaussian is centered at ܽ, multiplying the values at the 
points represented by ܴሺ݅ሻ, to obtain the new values of 
probabilities as : 
 

ܲሺ݅ሻ ൌ ܥ ൈ ܴሺ݅ሻ ൈ  ሺ7ሻ																												൫ܴሺ݅ሻ൯ܩ
 
 .is obtained by normalizing ܲሺ݅ሻ ܥ
5: The relative rate of the system r is computed. 
ܣ is updated as ܣ :6 ൅ ܣ as ܤ ,ܽ ൅ ܽ ൅  and the process is ,ݎ
iterated. 

 
 
Fig. 2.  (A) Line AB is the expected path taken by the SOM indices (base
velocity line), whereas the lines AC and AD show the cases where there
are deviations from the normal velocity. In case of AD, the timestep has
effectively decreased as indicated by its extrapolation on AB. Similarly,
there is an increase of the same parameter in case of path AC. In case of
AD, the velocity has decreased while in case of AC, the velocity will
increase. (B) This figure shows the probability based particle filter model
used showing transitions from normal walk velocity state to the other
states. The model is symmetric with respect to direction (back and forth). 
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III. RESULTS 

The gait data for healthy patients was smoothed using a 
six-term Fourier series function given by: 
 

݂ሺݔሻ ൌ ܽ଴ ൅෍൫ሺߙ௜ sinሺ݅. ݂. ሻሻݔ ൅ ሺߚ௜ cosሺ݅. ݂. ሺ8ሻ								ሻሻ൯ݔ

଺

௜ୀଵ

 

 
The simulations were performed using MATLAB 

(MathWorks Inc.). It is to be noted that in all simulations, 
the left leg is assumed affected while the right leg is healthy. 
Any change in the velocity of the system was initiated by the 
user by a force on the healthy leg, changing the belief of the 
particle filter backend. 

In all simulations, a Gaussian noise with 
standard	deviation ൌ 0.1 was added to the environment.  
 

ܵ௢ ൌ ܵ௔ ൅ ܰሺ0,0.1ሻ																															ሺ9ሻ 
 
ܵ௢is the observed SOM node and ܵ௔ is the actual SOM node. 

In the first simulation, the velocity of the healthy leg 
followed a sine waveform to assess its ability to control the 
affected leg using our technique. The results of this study are 
shown in the Fig. 3A. 

In the next simulation, the user’s intended velocity was 
kept constant at 0.8 and the system was initialized to have a 
prior belief value of 1 (r=1). Fig. 3B illustrates the time 
required to converge to 0.8, with a Gaussian noise of 
standard deviation 0.1 applied to it. 

Fugl-Meyer factor is an important quantitative and 
physiotherapic measure of the amount of recovery in a 
patient after hemiplegia. The aim of any rehabilitative task is 
promoting the usage of the affected limb to speed and aid the 
brain to recover neural control of the limb. A robotic 
exoskeleton should therefore not only provide for the 
necessary locomotive support but also facilitate recovery by 
promoting the use of the affected limb in an appropriate 
manner [6, 28-33]. 

To this end, we propose the following modification to the 
exoskeleton algorithm. We choose an appropriate 
membership function ݉ሺݔሻ to calculate the value of the 
recovery factor ܴ, given the Fugl-Meyer assessment 
parameter denoted by ߛ. Hence, 
 

ܴ ൌ ݉ሺߛሻ : ߛ ∈ ሾ0,226ሿ , ܴ ∈ ሾ0,1ሿ 
݉ሺߛ ൌ 0ሻ ൌ ܴ଴ ൌ 0																												ሺ10ሻ 

݉ሺߛ ൌ 226ሻ ൌ ܴଶଶ଺ ൌ 1 
 
Angles exhibited by the affected leg are attenuated with 
respect to correct values mirrored in the healthy 
counterparts. Thus, we relate the stroke affected angular 
velocity ሾߠ௣ሿሶ  to the correct ሾߠ௘ሿሶ  using a simple multiplicative 
model as shown: 
 

ܭ ൌ
௣ሶߠ

௘ሶߠ
ൌ
׬ ߬௣݀ݐ
்
଴

׬ ߬௘݀ݐ
்
଴

																																ሺ11ሻ 

 
The integral form is stated for clarity since the exoskeleton 
sensors give torque output at discrete time intervals. The 
behavior and distribution of ܭ was investigated using the 

TABLE I 
STROKE PATIENT DATA 

 

Months 
Since 
Stroke 

Side 
Hemiplegic Stroke Type Fugl-Meyer 

60 Left Hemorrhagic 160 
27 Left Hemorrhagic 125 
49 Left Ischemic 132  
61 Right Hemorrhagic 127 
40 Left Ischemic 130 
8 Right Hemorrhagic 160 
48 Left Ischemic 147 
39 Left Ischemic 141 
63 Left Ischemic 216 
222 Left Hemorrhagic 206  

Fig. 3.  (A)  A Gaussian noise of standard deviation 0.1 was applied on the 
affected leg as an observation error to see the belief change of the particle 
system. (B) The belief propagation and convergence of the algorithm for 
velocity of the affected leg (dotted line) vs. velocity of the healthy leg has 
been shown here. A Gaussian noise was added on the observed rate. The 
healthy leg started with a velocity of 0.8 while the initial belief of the 
particle filter was r=1. 

 
Fig. 4.   The progression of phase difference with the simulation time has 
been shown here for ߤ values from 0.1 to 0.9 (top to bottom). It can be 
seen how higher of control given to a user (0.9=ߤ) can result in a large 
phase difference between the legs. Hence, an optimum ߤ value must be 
chosen such that the tradeoff between this final phase difference and 
rehabilitation exercise remains optimum. The small figure on the right 
depicts how the affected leg gradually reaches to a smaller phase 
difference. The two bars represent angular values on the y axis. In an ideal 
case (0=ߤ), the two bars will always coincide and there will be no phase 
difference. The left bar (affected leg marker) moves at a different velocity 
than the healthy leg based on the probabilistic state machine belief, and 
eventually catches up with some small phase lag. 
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stroke patient data available. We comment on the 
distribution of ܭ being approximated as ܰሺߤ,  .ሻߪ

Let the correct torque to be applied to a joint by the 
exoskeleton to move the affected foot during  the time 
interval ݐ to ݐ ൅ ௦ܶ, be denoted by ߬௘. If complete control is 
given to the exoskeleton, the patient would not need to exert 
any force on the affected leg, rendering the rehabilitation 
exercise to be of little value. To facilitate successful 
rehabilitation of patient, we leave out a part of ߬௘ →  ௘, to߬ߤ
the patient. Hence, the total torque to the exoskeleton for the 
time period ௦ܶ is : 
 

߬௧௢௧௔௟ ൌ ሺ1 െ ሻ߬௘ߤ ൅  ௣                      (12)߬ߤ
 
Where ߬௣ is the incorrect torque applied by the patient to the 
stroke-affected leg. The net angular displacement of a joint 
in time ௦ܶ is : 
 
௧ߠ∆ ൌ ܥ ௦ܶ

ଶ߬௧௢௧௔௟ሺݐሻ ൅ ௧ሶߠ ௦ܶ ൌ ܥ ௦ܶ
ଶ߬௧௢௧௔௟ሺݐሻ ൅ ሺߠ௧ െ ௧ିߠ ೞ்ሻ 

௧ߠ∆ ൌ ௧ାߠ ೞ் െ  ௧ߠ
ሷ௧ߠ∆ ൌ ௧ାߠ ೞ் െ ௧ߠ2 ൅ ௧ିߠ ೞ்                     (13) 

ሾߠ௧ሿሷ ൌ ܥ ௦ܶ
ଶ߬௧௢௧௔௟ሺݐሻ 
 

Without loss of generality, we assume ߠ଴ሶ  and ߠ଴ to be zero. 
 

ሾߠ௧ሿሶ ൌ ෍ܥ ௦ܶ
ଶ߬௧௢௧௔௟ሺ݊ ௦ܶሻ

௧
ೞ்

௡ୀଵ

																										ሺ14ሻ 

  
From (13) and (14), we have: 

ሾߠ௧ሿሶ ൌ ෍ቀܥ ௦ܶ
ଶሺ1 െ ሻ߬௘ሺ݊ߤ ௦ܶሻ ൅ ܥ ௦ܶ

ଶ߬ߤ௣ሺ݊ ௦ܶሻቁ

௧
ೞ்

௡ୀଵ

 

 
ൌ ሺ1 െ ௘ሿሶߠሻሾߤ ൅ ௣ሶߠሾߤ ሿ 

 
ൌ ௘ሶߠൣ ൧ሺ1 െ ߤ ൅  ሻܭߤ

 
We observe that only a part of the angular velocity is 
mirrored onto the affected leg. Thus, we can equivalently 
hypothesize the same for absolute velocities recorded by the 
SOM based framework. Therefore we have: 
 

ሾݒ௧ሿ ൌ ሾݒ௘ሿ൫1 െ ሺ1ߤ െ  ሺ15ሻ																						ሻ൯ܭ
 
where ሾݒ௧ሿ and ሾݒ௘ሿ are the mirrored affected leg and the 
healthy leg velocity, respectively. This velocity is not the 
absolute velocity of the subject’s center of mass; it is the rate 
at which the complete state of the system described by the 
gait angles change. The phase velocity belief as computed 
by our algorithm is independent of this ratio, since it is only 
dependent on the observed speed and the particle filter. This 
ratio signifies the inability of the partially human controlled 
exoskeleton to reach the current phase of the healthy leg. If 
߮ሺݐሻ is the phase of the healthy leg as observed at ݐ, and 

߰ሺݐሻ is the phase of the affected leg at ݐ, then at ݐ ൅ ௦ܶ, 
߰ሺݐሻ’s movement is restricted by the parameter ߤ as follows: 
 
߰ሺݐ ൅ ௦ܶሻ ൌ 
൫߮ሺݐሻ ൅ ݎ െ ߰ሺݐሻ൯ሺ1 െ ߤ ൅ ሻܭߤ ൅ ߰ሺݐሻ							ሺ16ሻ 
 
If no control is given to the subject (ߤ ൌ 0), then ߰ሺݐ ൅
௦ܶሻ ൌ ߮ሺݐሻ ൅  ..which is the same as for the normal case ,ݎ

Hence, for non-zero ߤ, the phase difference between the two 
legs takes more time to converge.  
The value of the parameter ܭ was found to be centered about 
a mean that varies with respect to different patients as shown 
in Fig. 5. The results show that patients with high Fugl-
Meyer values generally exhibit higher mean values, and less 
noise, with the value converging towards 1 at full recovery. 

IV. DISCUSSIONS AND CONCLUSIONS 

The algorithm described in this study successfully 
produced the required pattern from a pre-learnt behavior. We 
showed that our technique is capable of maintaining a stable 
limit cycle in the presence of noise while simultaneously 
following (localizing) the patient’s intended velocity of 
motion. 

Understanding the intention of the patient is an important 
topic of research. In this study, we have shown a simple 
model to localize the intention of the user for changing gait 
velocity using a state machine. This method can be 
developed further to perform better prediction. 

In unilateral stroke, the kinematics and muscle activity 
(particularly the proximal muscles) of the unaffected side 
also shows deviations. This is due to the fact that gait is 
controlled by modular muscle synergies controlling both 
legs [34]. However, we have not taken this into account and 
assumed that with the correction provided by the robotic 
exoskeleton, the healthy leg will follow a normal gait 
profile. In Fig. 3A, a uniform delay can be observed between 
the user’s intended speed and the system’s belief 	ݎ. Two 
parameters that influence this delay are: 
a) The transition probability ௜ܶ௝; by increasing  the variance, 
the time required for the algorithm to converge to the user’s 
intended velocity is higher, and increases the delay. 

 
Fig. 5.  This figure shows the mean of the velocity ratios for each Fugl
Meyer value. 

654



  

b) The ݎ value of the particle filter states ௜ܵ range from 0.5 
to 1.5. 

This delay has an inevitable tradeoff with respect to the 
noise produced by the particle filter belief. Other localization 
techniques such as Kalman filters can be applied in this case 
to improve the performance of the algorithm. The particle 
filter used here works on the associated probabilities of each 
state unlike its conventional use. This helps in faster 
computation as probability propagation can be realized 
through simple matrix manipulations unlike the conventional 
case where each particle needs to be updated. 
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