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Abstract— This paper presents a system to supervise tissue
temperature during robotic laser surgery. The use of robotic
systems for laser surgery provides mechanisms to control the
motion of the laser beam and the exposure time of laser
radiation, allowing the automatic generation of incisions. This
work focuses on the perception side of the problem, developing
a technology for the online verification of the thermal state
of the tissue during robotic laser microsurgery. Obtaining
this information is paramount to enable automatic control
of laser incision quality, which is directly related to tissue
temperature. A model learned from real data estimates the
change in temperature given the exposure time and power of
the laser. The model is implemented in the real system and
validated during laser incisions on ex-vivo tissue. Results show
that the model can reliably estimate the thermal state of the
tissue in real-time, and thus is suitable to produce feedback for
automatic control of laser incisions.

I. INTRODUCTION

Lasers have been used in the treatment of otolaryngologi-
cal head and neck lesions since the early 1970’s [1]. Surgeons
remove unhealthy tissue from the vocal cords via laser
incisions as treatment for laryngeal cancer. The specimen is
resected firing the laser along the boundary of the affected
tissue. Fig. 1 shows part of the current setup for this type of
procedures: The laser beam is directed with one hand, using
a joystick-like input device, while the other hand manipulates
a forceps to apply traction on the tissue. Surgeons perceive
the progress of the surgery through a microscope. In order
to obtain the desired incision, the surgeon moves the laser
beam manually and decides the amount of time it should
be active. Consequently, the resulting incision length and
depth depend completely on the surgeon’s perception and
manipulation skills.

The limitations mentioned above have recently stimu-
lated new research and technological developments in this
area, specifically towards the creation of robot-assisted laser
microsurgery systems [2],[3],[4]. Robotic technologies can
facilitate and greatly improve the precision of laser micro-
surgeries by eliminating tremor, allowing motion scaling,
and by providing enhanced visualization and ergonomic
control. Nevertheless, at the present time limited assistive
technologies exist to perceive the state of the tissue while it
is being exposed to the laser.

Including new technologies to automatically perform inci-
sions also imposes the need to develop systems to supervise
this process. This paper presents a technology to supervise
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Fig. 1. Setup for laser surgery of the upper aerodigestive tract. The surgeon
directs the laser beam operating a joystick-like device with his left hand,
while using forceps to put tissue on traction. A microscope is used to obtain
a magnified view of the surgical site.

the temperature of tissue with the aim of preventing un-
desired thermal effects during the automatic generation of
incisions.

At the present time, no method for the online monitoring
of tissue temperature exists that could be readily adopted in
laser microsurgery. Traditional approaches require the use of
sensing equipment in direct contact with the measurement
site [5], thus resulting inappropriate for minimally inva-
sive procedures. Non-invasive techniques based on common
medical imaging technologies are being investigated [5].
However, these may require the introduction of substantial
changes to the medical protocol, e.g. the use of MRI-
compatible equipment. Furthermore, whether these methods
account for the dynamic changes in temperature observed in
a spatially concentrated area during laser microsurgery is to
be verified.

To overcome these drawbacks, here we propose the con-
cept of a system able to monitor temperature without the
need for additional sensing devices. The system is based on
a model that estimates the temperature on the tissue surface.
Such model is derived from data collected during real laser
incisions on ex-vivo tissue.

The paper is organized as follows. Section II describes
the roll of temperature during the laser incision process.
It also reviews the existing models describing the temper-
ature dynamics. Section III describes the technology for
the automatic generation of laser incisions. In Section IV
a temperature estimation model is derived from real data.
Description of the experiments and results are summarized
in Sections V and VI, respectively. Finally, conclusions and
future work are commented in Section VII.
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Fig. 2. Effects of CO2 laser radiation on soft tissue. Dark areas in the
surroundings of the incision indicate that temperatures over 100◦C have
been reached.

II. TISSUE TEMPERATURE DURING LASER INCISIONS

This section revises the underlying processes occurring
when producing laser incisions on soft tissue, motivating the
use of a temperature estimation model to supervise thermal
effects. Different approaches for modeling are discussed.

A. Laser-Tissue Thermal Interaction

When applying laser light to biological tissue different
interactions may occur (e.g., thermal, photochemical, pho-
toablation, photodisruption). The type of laser-tissue in-
teraction depends on the power density ( W

cm2 ) and expo-
sure time (s) [6]. For the case of laser incisions, a thermal
interaction takes place: tissue molecules are promoted to
an excited state due to the absorption of photons, excited
molecules collide with partners in the surrounding, such col-
lision leads to the deactivation of the excited molecules and
the increasing of the kinetic energy in the partners. Tissue
temperature rises microscopically because of the transferred
energy from photons to tissue. As tissue is composed mostly
of water its molecules start to vaporize at 100◦C, resulting in
a thermal decomposition [6]. In first approximation, cutting
tissue can be described as boiling water. Another effect that
may occur during a thermal interaction is known as Car-
bonization. Fig. 2 shows carbonized ex-vivo tissue (chicken
breast). It occurs when the tissue temperature rises above
100◦C [6]. Carbonization indicates the tissue was burned
during the cutting process. It is a non-intentional effect that
decreases the quality of surgical procedures, resulting in non
ideal cicatrization and the formation of scar tissue. Surgeons
keep the laser exposure long enough for cutting, but short
enough to avoid carbonization. The onset of carbonization
is determined by the temperature at the incision and how it
spreads out in space as times goes on [7].

B. Modeling tissue temperature dynamics

The temporal change on temperature at certain point of the
tissue, given a laser input, can be modeled using the Heat
Diffusion Equation [6], [7],

∂T

∂t
=

κ

ρCp
∇2T +

1

ρCp
u, (1)

where T (◦C) denotes the temperature at the point of interest,
κ
(

W
m◦C

)
is the tissue thermal conductivity, ρ

(
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m3

)
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represent the tissue density and specific heat

capacity. The input of the system u
(

W
cm3

)
is the energy

absorbed per unit of volume and time, which depends on
the location of the point of interest and varies with time.
The nominal value of the input depends on the absorp-
tion coefficient, µa

(
1
m

)
, of the tissue to the corresponding

wavelength of the laser light. Although the analytical model
unequivocally describes the elements involved in the change
of temperature, the main disadvantage of it relies on the
temporal and spatial dependencies of u. Additionally, most
of the times this model is numerically evaluated, as its
solution implies assumptions on the boundary conditions [6].
Thus, the analytical model is not suitable to be used for the
online estimation of the temperature of the tissue during laser
surgery.

Numerical simulation of this phenomenon have also been
developed. In [12] [13] and [14] different types of sim-
ulations are presented to reproduce the change on tissue
temperature during single point laser incidence. Although
using different simulation methods, these models were used
to supervise deep locations in the tissue during low power
radiation, i.e., not during incisions. In [8] we presented a
simulation of the temperature dynamics on soft tissue during
single point incision. The purpose of the simulation was to
generate data to learn a model of the relationship between
input variables similar to those used during laser surgery (i.e.,
laser power and activation time) with the resulted change
in temperature. It was shown that this phenomenon can be
modeled using machine learning techniques.

The motion of the laser beam includes an important
challenge to the objective of modeling the thermal effects.
The function describing the input u in (1) should include this
behavior. None of the modeling approaches presented above
consider the case of a moving laser beam.

In this work we go further, estimating the temporal change
of the temperature at the surroundings of a laser incision,
i.e., taking into account the motion of the laser. Such
model is derived from experimental data captured during
real laser incisions on ex-vivo tissue (chicken breast). The
model is suitable to produce online estimation of temperature
synchronized with the automatic generation of incisions.

III. AUTOMATIC GENERATION OF LASER INCISIONS

The motion of the laser beam is controlled using a mo-
torized micromanipulator developed in our laboratory [10].
The activation time of the laser is precisely controlled with a
piezo controller system (PI E-517). Fig. 3 depicts the concept
of this technology.

Automatic incisions are then created moving the laser
beam along a line of length (l) during certain exposure
time (texp). The motion of the laser scans the complete
line at a configurable velocity and oscillatory frequency (w).
Therefore, the number of times the laser scans the incision
is given by η = texp/w. The period of time the tissue
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Fig. 3. Robotic laser micromanipulation system. The beam is deflected on
the target by a 2-DOF steering mirror, which can be controlled to produce
automatic laser trajectories.

is exposed to the laser is uniformly distributed along the
incision line. The system can generate any trajectory encoded
as a sequence of points. The width of the incision is variable
and it is mostly determined by the laser exposure time,
nevertheless it can be roughly approximated by the size of
the projection of the laser beam on the target, i.e., the laser
spot. In the system used in this research, maximum power
density is obtained when the laser spot is focused with a
radius of rs = 250µm.

The distribution of the energy in the laser beam is Gaus-
sian. This beam profile is known as TM00 [9] where most
of the energy is concentrated in the center of the incidence
point. Consequently, the spatial profile of the heat transferred
to the tissue is also Gaussian.

For single point laser exposure, the change on temperature
on the tissue surface may be modeled as a temporal change
of the parameters of a single Gaussian. Contrarily, the motion
of the laser beam imposes the use of a more explicit model.
In the following section we analyze the temporal change on
temperature on the tissue surface from real data, from which
the structure of the model is then derived.

IV. TEMPERATURE ANALYSIS

Incisions on ex-vivo (chicken breast) tissue were generated
using the robotized system. Temperature of the surface was
collected using a thermal camera providing a stream of
images at a certain resolution. Each image is organized
as a matrix of values representing the temperature of the
corresponding point in the scene.

Let T ∈ Rm×n be a two-dimensional matrix representing
the values of temperature of a continuous rectangular plane
S of known length (Y ) and width (X). The temperature of
any point x, y ∈ S will be given by the (i, j)-element of the
matrix, following the quantizations,

i =
⌈

y
∆y

⌉
, j =

⌈
x

∆x

⌉
(2)

where ∆y = Y/m, ∆x = X/n, and the d·e notation
expresses the ceil function.

During laser exposure, temperature values of the surface
change with time, i.e.,

T (S) = f(x, y, t). (3)

The camera provides images at a constant rate (∆t =
0.01s), thus data is available at certain times instances, i.e.,
t = k∆t.

Examples of the temperature profile for different times of
the process T (S, k) are shown in the first row of Fig. 4.
With the aim of reducing the problem complexity, symmetry
is assumed in the y axis, and the temperature along the x axis
is shown. It can be observed that the Gaussian distribution
of the energy in the laser beam is present in the shape of
the resulted temperature profile, nevertheless, as the beam
moves along the incision, the temperature profile does not
show any particular pattern as it grows in time.

On the other hand, the temporal increment of the temper-
ature ∆T (k) = T (S, k + 1) − T (S, k) can be described as
a set of of Gaussian functions that moves along the incision
line. Second row of Fig. 4 shows the temperature increments
for the corresponding exposure time. Initial observations
suggest that the positive part of ∆T is always described
by a single Gaussian, while the negative part shows diverse
conformations. The positive part corresponds to the effect of
the laser incidence plus the contribution of underlying heated
tissue. Thus, the center of this Gaussian is expected to move
together with the laser beam along the incision. The negative
part of this function corresponds to the cooling down process,
which in (1) is denoted by the Laplace operator (∇2(·)). This
second order term confirms the observation that the shape of
the negative part should contain higher order differences of
T (S, k).

We hypothesize that the function describing the temper-
ature of the surface at each frame of the process can be
approximated as a sum of Gaussian functions,

T (S, k) =

p∑
i=1

exp(x, y, ai, σi, µi) (4)

where p is the total number of Gaussian functions and ai,
µi and σi the corresponding amplitude mean and covariance.
Nonlinear least square fitting regression [11] can be applied
to fit (4) to the experimental data.

V. EXPERIMENTS

Incisions on ex-vivo tissue were produced using a com-
mercial surgical laser - Zeiss Opmilas CO2 25 : wavelength
10.6 µm, TEM00 beam profile with Continuous Wave (CW)
and 2—25W power range. The motion of the laser beam is
controlled by a motorized micromanipulator. Fig 5 shows the
system components.

Data is provided by a digital thermal imaging camera
(FLIR A655, measurement range: -40 to 250 ◦C) equipped
with a filter for CO2 emissions. The output from this camera
is a stream of video images with a resolution of 640× 480
pixels at a frame rate of 100Hz. The region of interest was
defined to be m = 40 × n = 60 pixels, capturing the

365



Fig. 4. First row: Tissue temperature profile during computer controlled incision (l = 0.3mm,w = 10Hz). Although the Gaussian distribution of the
energy in the laser beam is present, the profile does not show any particular pattern as it grows in time. Second row: Temporal change on temperature
∆T = T (S, k + 1) − T (S, k − 1)

Fig. 5. Experimental setup: Thermal camera, microscope, and laser system.

region where the incision takes place. This field was selected
observing the heat propagation. Distance from the camera to
the tissue was maintained constant.

An incision similar to those used during microsurgery is
chosen to be modeled. Incision length (l = 4.6mm/25pixels)
and scanning frequency (w = 10Hz) are kept constant.
Fig. 6 shows a thermal image of the ex-vivo chicken tissue
during the generation of the incision. The area of interest (S)
is also shown. Laser power (P = 3W), and exposure mode
(Continuous Wave) were also configured. Total exposure
time is set to texp = 1.0s.

VI. RESULTS

The x-axis is aligned with the incision line and the spatial
distribution of the temperature is assumed to be symmetric

Fig. 6. Thermal image of the tissue target captured during incision process.

with respect to the y-axis. Here we compare the quality of
the model for different values of p. Based on the knowledge
provided by (1), we may hypothesize that the number of
Gaussians required for the model is p = 4. Nevertheless
here we compare the models for different values of p.

For the simplified case of one-dimensional distribution of
temperature, the temperature on the incision line Tk(x) is
defined by the function

Tk(x) ≈
p∑

i=1

exp(x, µi, σi) (5)

Each experiment is composed by 100 data sets (texp =
1.0s,∆t = 0.01s). The number of input-output pairs per data
set is given by the width (in pixels) of the area of interest.
Thus, the model is composed by a total of 100 regressions,
each one is obtained using m = 60 data pairs {xj , Tj}mj=1.
Fig. 8 shows three examples of function approximated.
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TABLE I
REGRESSION RESULTS ANALYSIS: MEAN SQUARE ERROR FOR n = 100

REGRESSIONS.

p MSEmax MSEmin mean median Q3 - Q1
3 17.5740 0.2417 3.4297 2.9353 2.0371
4 6.8735 0.2172 2.3121 1.9963 1.7247
5 4.6750 0.2373 1.8510 1.6354 1.3536

Fig. 7. Regression result (p=3). Real temperature is also shown.

A. Modeling error

The output of the regression at each time step is a vector of
parameters (amplitudes, means and standard deviation), θk =
[ak, µk, σk], where a, µ, σ ∈ Rp. Each data set generates an
approximation error, i.e., it is variable along the experiment.
The mean square error (MSE) is analyzed to compare the
quality of the model for different values of p = 3, 4, 5.

Table I summarizes the information about the variabil-
ity of the regression error along the experiment, including
maximum, minimum, mean, median and interquartile range.
It can be seen that the model fits better when using more
Gaussians: p = 4 performs better than p = 3, while not
significant improvements can be observed by increasing the
number of basis functions to p = 5. Fig. 7 shows the
temperature estimation when modeling with few Gaussian
basis functions. On the other hand, Fig. 8 shows three
examples of regressions with p = 4. Different forms of
temperature profile are shown.

B. Model Validation

Based on the analysis presented above, a model using p =
4 is selected to estimate the temperature dynamics during
laser exposure. A total of 12 parameters for each time step
are used for prediction.

In order to validate the model, a new experiment is
performed and thermal data is captured while the model
estimates the temperature profile. Validation error is com-
puted pixel-wise during texp = 1s. Fig. 9 shows the real
temperature profile for the validation experiment and the
resulted temperature estimation (for the same time steps used
in Fig 8). It can be observed that the new experiment slightly
varies with respect to the learning data set. This causes a
relatively high pixel-wise error, as presented in Table II.

Nevertheless, the range and distribution of the temperature
is effectively estimated at each time step. In order to illustrate

TABLE II
VALIDATION RESULTS ANALYSIS: MEAN SQUARE ERROR FOR n = 100.

p MSEmax MSEmin mean median Q3 - Q1
4 19.27 4.4438 12.52 13.4160 10.3432

Fig. 8. Temperature profile at different stages of the incision. Continuous
line (blue) shows data collected from experiments, dash line (red) shows
the result of the regression p = 4.

this, a comparison between the maximum value at each time
step is shown in Fig. 10. It can be observed that the model
captures the dynamics of the temperature change. The shape
of the temperature profile is compared by computing the area
under the curve at each time step, also shown in Fig. 10. It
can be observed that the model is able to effectively estimate
the thermal state of the tissue surface.

VII. CONCLUSIONS AND FUTURE WORK

A model able to reliably estimate tissue temperature varia-
tions during laser incisions on soft tissue was developed. The
model is extracted from real thermal data collected during
automatic laser incisions on ex-vivo tissue (chicken breast).
Further efforts will be directed towards the creation of a more
realistic model that captures the temperature dynamics in liv-
ing tissue. Although some heat transfer mechanisms typical
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Fig. 9. Validation experiments. Sensor data (solid green line) and the
corresponding temperature predicted by the model (dashed red line).

Fig. 10. Validation experiment. Maximum values of temperature for each
time step are presented (top). The integral of the area under the curve for
each time step is also presented (down).

of living tissue – e.g. blood perfusion – can be neglected
to a first approximation [6], additional experiments will be
performed to validate the proposed modeling approach for
in-vivo applications. Experiments presented in this paper
were performed under controlled power conditions (P=3W),
additional data is required to model the behavior of different
power settings.

The model presented in this paper was implemented in
the software system that controls the motion of the laser
beam and the exposure time of the laser. Activation and
deactivation of the model is synchronized by the system,
allowing online estimation of the temperature of the tissue
surface. Once the thermal supervision is available, different
policies can be used to prevent thermal damage on the tissue.
Modification of the scanning frequency or deactivation of
the laser exposure can be manipulated by the central system
based on the output of the model.
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