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Abstract—Stroke impairs individuals to perform activities of 

daily living. Intense rehabilitation programs offer hope for 

recovery, but are labor intensive and costly. Robotic 

rehabilitation technology plays a key role to solve such a 

problem. Current robotic systems along with brain computer 

interface (BCI) allow patients to participate in rehabilitation 

exercises, which require their own mental inputs. Studies have 

shown such active rehabilitation exercise can induce 

neuroplasticity and help towards recovery. However, even 

though BCI-driven robotic systems do exist, they are large 

complex systems and expensive to set up. These drawbacks limit 

a wide distribution of these technologies. Currently, the BCI 

robotic systems only used in large hospitals or research settings, 

not community level facilities. To facilitate the accessibility of 

stroke patients to such technologies, we propose a novel 

BCI-driven exoskeleton rehabilitation system. The exoskeleton 

has four degrees of freedom (DOF) for assisting the movement 

of the upper extremities. It is integrated with an affordable and 

wireless EEG headset for enabling the patients to control the 

movement of the exoskeleton with their brain activity. The 

developed exoskeleton is portable and easy to set up. A 

sequential control scheme is proposed to allow the user to 

control one movement at a time. An experiment was designed to 

assess if a healthy individual was able to control the movement 

of the exoskeleton correctly under a predefined sequence.  One 

volunteer participated in the exploratory study and the 

volunteer was able to correctly control the exoskeleton in each 

step.  

I.  INTRODUCTION 

 Stroke impairs individuals to perform activities of daily 

living [1]. Intense rehabilitation exercise offers hope to regain 

full or partial motor skill activities. However, the 

rehabilitation is often expensive primarily due to the cost of 

the required human resources. According to the 2013 update 

from the American Heart Association: "the mean expense per 

person for stroke care in the United States in 2009 was 

estimated at $6018.164 … the cost includes inpatient care, 

rehabilitation, and follow-up care necessary for lasting 

deficits" [2].  
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In order to reduce the cost and enhance the quality of stroke 

rehabilitation, researchers around the world have been 

focusing on robotic rehabilitation [3]. Robotic rehabilitation 

systems that perform passive repetitive training can in fact 

reduce the cost of rehabilitation. However, they often do not 

actively engage the patients. Studies have shown that the 

exercises requiring the patient's own effort to initiate the 

motion have better outcomes than the passive robot assisted 

exercises [4, 5].  

Towards this goal, robotic systems driven by surface 

electromyography (sEMG) signals have been proposed for 

active rehabilitation exercise [6-10]. However, such method 

is difficult to be used by patients with severe stroke, as either 

muscle co-contraction or atrophy can be present.  

The use of brain-computer interface (BCI) [11] could 

potentially overcome this difficulty. Using a BCI, an 

individual can communicate with the outside environment 

without passing through the neuromuscular system. Recent 

research suggests that mental exercises using BCI can induce 

neuroplasticity, which is particularly important for 

individuals with stroke [12, 13]. 

 Electroencephalography (EEG) is the most commonly 

used method for BCI due to its non-invasive nature. However, 

because EEG has low signal to noise ratio (SNR), 

sophisticated hardware is needed for signal extraction. The 

EEG acquisition equipment is usually expensive, which 

limits its usage in hospitals and research labs.  

 In the field of BCI and robotic research, projects like 

MIT-MANUS [14], BRAVO [15] and MUNDUS [16] are 

some of the comprehensive examples. However, these robotic 

rehabilitation systems are sizable and complex. Generally, 

they are inherently expensive and used for research purpose 

only. To accelerate the spread of BCI-driven robotic systems 

and make the technology available to stroke patients, a 

portable, easy-to-setup and potentially affordable 

exoskeleton-BCI system is needed.  

 In recent years, there has been a rapid advance in EEG 

technology. Portable EEG headsets are becoming more and 

more popular. Some examples are the Emotiv EEG 

Neuroheadset [17], the NeuroSky headset [18], the MindFlex 

[19] and the Brain Sensing Headband from Muse [20]. These 

off-the-shelf EEG headsets are relatively affordable and easy 

to setup for the users. They usually come with open source or 

proprietary software libraries that allow third-party 

developers to develop custom applications. From the 

application point of view, the BCI technology has become 

more and more mature.  

In order to spread the usage of BCI and robotic 

technologies for rehabilitation, the development of a portable, 

easy-to-setup exoskeleton is one of the remaining challenges. 
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 In this paper we propose a portable 4 DOF upper limb 

exoskeleton system that can be driven by the user's conscious 

thought using the Emotiv EEG headset.  

This paper is organized as follows. The design of the 

exoskeleton is presented in Section II. The utilization of the 

EEG headset is described in the Section III. The control 

scheme of the BCI-exoskeleton system is described in 

Section IV. The experiment that was designed to show the 

performance of the system is presented in Section V. The 

experimental results are presented in Section VI. The 

conclusion and future work are discussed in Section VII. 

 

II. UPPER LIMB EXOSKELETON WITH 4 DOF   

    The proposed exoskeleton consists of 4 DOFs. It allows 

independent control of the following movements: elbow 

flexion/extension (is actuated by Joint 1 in Fig. 1), forearm 

pronation/supination (is actuated by Joint 2 in Fig. 1), wrist 

flexion/extension and ulna/radial deviation (are actuated by 

Joint 3 & 4 in Fig. 1).  

. 

 

As shown in Fig. 1, the proposed exoskeleton is a portable 

device. With 4 DOF of control, the exoskeleton is capable of 

assisting different complex functional movements for 

rehabilitation or assistive purposes. And to maximize its 

practicality for different rehabilitation tasks, it was designed 

in a modular fashion. It consists of two modules, the 

elbow-forearm module and the wrist module. Each module 

can be used independently.  

The elbow-forearm exoskeleton module (see Fig. 2) has 2 

DOFs to control elbow flexion/extension and forearm 

pronation/supination. The elbow movement is actuated using 

an efficient brushless DC (BLDC) motor with customized 

gearbox. The mechanism for the forearm pronation and 

supination consists of two interlocking semi-cylindrical 

components. The proximal semi-cylinder (colored in red in 

Fig. 2) is attached to the elbow joint while the distal 

semi-cylinder (colored in green in Fig. 2) is connected to the 

extension connector for the wrist module. A brushed DC 

motor, which is enclosed in the proximal semi-cylinder, is 

used to actuate forearm supination/pronation.  

 
    The wrist exoskeleton module (see Fig. 3) has 2 DOFs 

to control wrist ulnar/radial deviation and flexion/extension. 

The exoskeleton consists of 3 main components. They are the 

forearm brace (colored in light blue in Fig. 3), the hand brace 

(colored in green in Fig. 3) and the actuation base (colored in 

red in Fig. 3).  

The forearm brace can be attached to the user's forearm 

with straps or attached to the elbow module, while the hand is 

secured to the hand brace with pads and straps. The 2 DOF of 

movements are separately actuated by two micro geared 

motors that are mounted on the actuation base. For the 

ulnar/radial deviation, the motor is mounted at the end of the 

base. When the motor actuates, the torque is applied to the 

forearm brace, and then the reaction torque drives the 

actuation base. For the flexion/extension, the motor is 

mounted on the middle of the actuation base. The torque is 

transferred to the hand brace using a set of sprocket and a 

chain.  

 
The exoskeleton are designed to provide sufficient torque 

to assist functional movement for the users who have mild 

spasticity in their muscles. And to prevent possible injuries 

due to movements outside the range of motion (ROM) of the 

users, mechanical stoppers are implemented to constrain the 

ROM of each joint.  The maximum applied torque and the  

ROM of each joint of the exoskeleton are shown in Table I. 

 

 

 

Figure 3.  CAD of the wrist module  

 

Figure 2.  CAD of the elbow-forearm module  

 

Figure 1.  Exoskeleton prototype  
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  TABLE I.  Maximum applied torque and ROM of the exoskeleton 

Joint Maximum 

applied torque 

ROM 

1 10 N.m. ± 60o 

2 4.4 N.m. ± 75o 

3 2 N.m. ± 60o 

4 2 N.m. ± 30o 

 

III. BRAIN CONTROL INTERFACE USING EMOTIV EEG HEADSET 

Among different headsets, the Emotiv EEG headset 

probably is the most suitable for controlling our exoskeleton 

because of its multichannel configuration.  The Emotiv EEG 

headset has 14 electrodes, which are located at AF3, F7, F3, 

FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 according 

to the International 10-20 system [21]. Fig. 4 shows the EEG 

headset and the accompanied Emotiv Cognitiv™ Suite 

control panel [17].  

The control panel allows the user to perform mental 

training to control the movement of a cube in the center of a 

computer screen (see Fig. 4). 

 

 
As a commercial system for gaming, the EEG signals are 

classified within the Cognitiv™ Suite using a supervised 

learning approach. The user has to train the system with one 

or more conscious thought. After collecting the training 

samples, the classification results in a control command is  

provided instantly with the corresponding activation power. 

The activation power indicates the user's concentration 

intensity of the trained thought. 

 These data can be extracted by utilizing the provided 

software library. However, due to the complexity of the user's 

mental state, artifacts or other external interference, the 

instant classification result does not always reflect the true 

conscious thought. For instance, when the user is in a 

non-control (i.e. neutral) state, he/she may notice the cube in 

the control panel bounce momentarily even though he/she has 

not initiated the trained thought. In the situation in which 

feedback is present, the user may attempt to actively "clam 

down", which increases the instability of the output. This 

situation may worsen when the user attempts to control two or 

more actions with different conscious thoughts. Thus, the 

instant classification result is not suitable for directly 

controlling the robotic device for rehabilitation or assistive 

tasks through a multi-class classification scheme.  

In order to utilize the Emotive system for BCI robotic 

rehabilitation in practice, we adopted a simple strategy to 

filter the instant prediction result. In this way, the BCI system 

could better reflect the user's true conscious thoughts and 

could allow the user to control the robotic device. This 

strategy requires the user to maintain a conscious thought for 

a short period when sending a control command. The average 

mental activation power of this period is used instead of the 

instant activation power that is obtained directly from the 

Emotiv system.  

IV. CONTROL OF BCI-EXOSKELETON SYSTEM  

The proposed exoskeleton has 4 joints corresponding to 8 

different movements that could be classified. These 

movements are elbow flexion/extension, forearm 

pronation/supination, wrist flexion/extension and wrist 

ulna/radial deviation.  Ideally, we would like the BCI system 

to be able to classify 8 different thoughts, plus the user's 

neutral mental state. However, it is difficult for the BCI 

system to accurately classify more than two conscious 

thoughts.  

In order to minimize the mental and physical fatigue of the 

user, we only trained the user to use one conscious thought to 

activate the different movements of the exoskeleton by using 

a sequential control scheme. Under the proposed scheme, the 

user can control one movement at a time and with one trained 

thought.  

To control the different movements, a motion enabled 

panel is shown to the user during the operation of the system. 

The panel was constructed under the LabView environment 

as shown in Fig. 5. It consists of 8 indicators which are 

arranged in a 2 by 4 matrix. The columns of the matrix 

represent the exoskeleton joints; rows of the matrix represent 

the available movements of the joints.  

 

 
When a movement of the exoskeleton is enabled, the 

corresponding indicator lights up as shown in Fig. 5, which 

signifies the user to decide whether to activate the movement 

or not. If the user decides to active, then the user needs to hold 

the trained thought for a minimum of 7 seconds; if the user 

decides not to active, then the user needs to maintain in the 

neutral state for a minimum of 7 seconds. As shown in Fig. 6, 

the first 3 seconds are considered to be the transition period, 

no data is registered. This period is followed by the decision 

period that lasts 4 seconds. During the decision period, the 

instant activation power extracted from the Emotiv library is 

 

Figure 5.   Motion enabled panel: F/E - flexion/extension, S/P - 

supination/pronation, U/R - ulna/radial deviation 

 

Figure 4.  Emotiv EEG headset and Cognitiv™ Suite control panel  

Wrist flexion of the exoskeleton is enabled 

434



  

registered. Once this period is over, it is followed by the 

post-decision period, which last 3 seconds. In this period, the 

registered instant activation power is averaged. If the 

averaged activation power exceeds a defined threshold, then 

the movement of the exoskeleton is activated; otherwise, it 

remains idle. This period also allows the user to return to the 

neutral state and get ready to give the next command. A total 

of 10 seconds are needed for each command given by the 

user. To note, the exact timing in the decision procedure is 

determined empirically such that the user does not feel mental 

fatigue while allowing the system to register enough instant 

activation power samples.  

 

V. EXPERIMENTAL PROTOCOL 

An experiment was designed to assess if a healthy 

volunteer was able to control the movements of the 

exoskeleton correctly under a predefined motion sequence. 

This sequence involves the control of all 8 different 

movements which the exoskeleton can assist with. However, 

in a real rehabilitation scenario, it is not necessary to have all 

8 movements in the sequence. The operator such as the 

physiotherapist can specify a preferred sequence for the 

patients. In our experiment, the overall protocol consists of 

three stages: the training stage, the assessment stage, and the 

control stage. 

During the training stage, the volunteer was given time to 

get familiar with the Emotiv system, spending 10 to 15 

minutes to train the Emotive software for one conscious 

thought, which was preferred to be associated with 

movements. After the training stage was completed, the 

software would give a score based on the accuracy of the 

training data set. Based on prior experience, a score above 20 

generally showed that the volunteer had sufficient skill to 

control one trained thought in the Cognitiv™ Suite (see Fig. 

4). Once the training is completed, the volunteer can proceed 

to the assessment stage.  

During the assessment stage, the volunteer follows the 

instructions on the screen, which prompts the volunteer to 

alternate the mental state between active thinking and neutral 

state. The purpose of this stage is to identify the optimum 

mental activation threshold for controlling the exoskeleton in 

the next stage. The exact procedure during this stage is 

described in the following paragraph (see Fig. 7).  

Our software gives the "neural" command and the 

volunteer is supposed to maintain a cognitive neural state 

(relaxing). After 10 seconds, the software instructs the 

volunteer to actively think a specific thought related to the 

functional movement and maintain that thought for 7 seconds. 

After that, the volunteer returns to the neural state. The 

volunteer repeats this procedure for 16 times for the 

assessment. After the assessment stage is completed, our 

software captures the average activation power for both 

active and neutral states. Based on the information collected, 

a Gaussian classifier [22] is used to automatically detect the 

optimum mental activation threshold.  

  
 During the final control stage, the volunteer is asked to 

drive the 4 DOF exoskeleton with only active and neutral 

thoughts. The indicator on the screen (see Fig. 5) shows 

which movement is currently enabled. The volunteer 

performs the active thinking when he/she intends to do so, 

and the timing is not prompted by the action panel. If the 

average activation power is higher than the threshold found in 

pervious stage, then the enabled movement is activated; 

otherwise, no movement is assisted.  

For testing purpose, two predefined sequence was given to 

the volunteer and the system's motion enabled panel as shown 

in TABLE II. Under this arrangement, the volunteer could 

correctly complete the action sequence only if he/she 

performed the active thinking at the right moment; otherwise, 

a wrong exoskeleton movement would be triggered.  
TABLE II.  Action Sequence 

Time 

(seconds) 

Action sequence for 

volunteer 

Enabled motion 

10 Think of an action Elbow flexion (EF) 

20 (neutral) Elbow extension (EE) 

30 Think of an action Forearm supination (FS) 

40 (neutral) Forearm pronation (FP) 

50 Think of an action Wrist flexion (WF) 

60 (neutral) Wrist extension (WE) 

70 Think of an action Wrist ulna deviation (WU) 

80 (neutral) Wrist radial deviation (WR) 

90 (neutral) Elbow flexion (EF) 

100 Think of an action Elbow extension (EE) 

110 (neutral) Forearm supination (FS) 

120 Think of an action Forearm pronation (FP) 

130 (neutral) Wrist flexion (WF) 

140 Think of an action Wrist extension (WE) 

150 (neutral) Wrist ulna deviation (WU) 

160 Think of an action Wrist radial deviation (WR) 

VI. RESULT AND DISCUSSION 

As a preliminary study, a healthy volunteer participated in 

the experiment. The result during the assessment stage for the 

volunteer is shown in Fig. 8. The y-axis shows the "thought 

intensity" and the x-axis is the time in seconds. The yellow 

region indicates the active thinking state and the white region 

 

Figure 7.  Command sequence in the assessment stage 

 

Figure 6.  Decision making scheme 
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indicates the neutral state. The black stem shows the thought 

intensity in each state, which was evaluated by averaging the 

accumulated instant thought power. After the task was 

completed, our software calculated the average activation 

intensity for the entire session (blue line in Fig. 8), as well as 

the average non-activation intensity (green line in Fig. 8) 

automatically. 

  
The thought intensity for active thinking has a larger 

variance than that for the non-active thinking. Gaussian 

classifier was used to decide the optimum decision boundary. 

Our software modeled the two sets of active and non-active 

thinking data using the Gaussian model, which is shown in 

Fig. 9. The y-axis is the probability of the thought intensity, 

and the x-axis is the value of the intensity. For the non-active 

thinking data, the mean value is 0.0319 and the standard 

deviation is 0.067; for the active thinking data, the mean 

value is 0.579 and the standard deviation is 0.211. The 

decision boundary was identified at the cross point between 

the two distributions, which was 0.195 for volunteer who 

participated in this study. The difference between active and 

non-active states can be clearly identified, which shows the 

volunteer can operate the BCI with ease. 

 

 
 The result data from the control stage for the volunteer is 

shown in Fig. 10. In the both plots, the background colors 

shows the different enabled movements of the exoskeleton as 

shown in the 3rd column of Table II; the red rectangles 

indicates the volunteer's activation sequence as shown in the 

2nd column of Table II. In the upper plot, the black stems 

indicate the thought intensity; and in the lower plot, the 

colored solid lines show the angular positions of each of the 

four exoskeleton joints. Whenever the thought intensity was 

above the threshold, the exoskeleton moved to the predefined 

position. From this plot we can see the volunteer's thought 

intensity was well above the defined threshold when the 

desired movement was enabled, which illustrates the 

volunteer's ability to use the BCI system for correctly driving 

the exoskeleton device under the defined sequence.   

 

 

 
Figure 10.  Test result during the control stage:  EF - elbow flexion; EE - 

elbow extension; FS - forearm supination; FP - forearm pronation; WF - wrist 

flexion; WE - wrist extension; WU - wrist ulna deviation; WR - wrist radial 

deviation 

VII. CONCLUSION 

 In this paper, we proposed a novel BCI-driven upper limb 

exoskeleton system for rehabilitation application. The 

exoskeleton has 4 DOF of control. Each movement can be 

driven by user's own thought at one instance. An experiment 

was designed to assess if a healthy volunteer can operate the 

system with ease. The result of the experiment shows the 

system can correctly distinguish between a conscious thought 

and the volunteer's neutral state and the system can use this 

information to drive different movements of the exoskeleton.  
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