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Abstract— This paper presents the design of the socially as-
sistive companion robotic wheelchair named RoboChair. Unlike
in most current companion robotics projects, the approach of
RoboChair is not to build a completely new robotic device.
Instead, the focus of the RoboChair project is to convert an
already useful device (i.e. wheelchair) to a socially assistive
companion robot. The authors argue that there are number of
advantages in this approach.

The proposed robotic chair is a mobile robot that can carry
a person. It is equipped with several measuring devices for
measuring vital signs. The robot chair is capable of engaging
users with interactive dialogs through a touch screen and by
using human-robot interaction techniques. It has a scalable
modular software architecture so that adding new hardware
and software modules is straightforward. The software frame-
work is based on Robot Operating System (ROS) open source
robotic middleware.

I. INTRODUCTION

Developing socially assistive robots is an emerging inter-
disciplinary research area, which requires collaboration be-
tween a wide range of disciplines, including robotics, health
sciences, psychology, gerontology, and human-computer in-
teraction [1] [2]. In recent years, there is an increased interest
in this area due to multiple reasons. Increasing capabilities of
mobile service robots, increasing needs of people for assis-
tance, and increasing numbers of older population around the
world are some of the important reasons [3]. On the other
hand, there is an increasing shortfall in numbers of health
professionals and caregivers [4].

Among recent research projects, there have been attempts
to develop assistive robotic solutions to solve various health
and social issues. Mobility aids [5], manipulation aids [6],
therapeutic aids [7], surgical robots [8], physical and mental
rehabilitation robots [9] [10], medication reminding robots
[11] and elder-care robots [12] [13] are some examples .
Among these solutions, ‘socially assistive robots’ belong to
a distinct category.

Socially assistive robots are different from social robots
and entertainment robots, which provide relatively simple
human-robot interactions. In contrast, socially assitive robots
are expected to provide a broad range of services to support
daily activities of users.

In most current research attempts to design socially as-
sistive robots, the focus is on designing new robotic agents
that can interact with people by various means [14], [15],
[16]. Since people do not have much experience with robots,
usually extensive field trials are conducted in order to assess
the usability of these robots. However, determining the
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usability of these robotic agents is a difficult task, since the
results of field trials are not always conclusive [15], [17].
The difficulty of assessing usability directly affects product
development and commercialization.

A. An alternative approach for developing useful socially
assistive robots

In this paper, an attempt to overcome the difficulty of
evaluating usability of assistive robots is presented. The
authors suggest a novel approach to develop socially assistive
robots and the current status of a research in that direction
is presented.

The authors approach is to convert an already useful assis-
tive device to a socially assistive robot by embedding various
robotic features. The objective of the research presented on
this paper is to convert a normal powered wheel chair to a
socially assistive companion robot. Functionally, this wheel
chair will act as a socially assistive companion robot, while
fulfilling its function as a wheel chair.

II. SYSTEM OVERVIEW

This paper presents the design of the first version of a com-
panion robot called RoboChair. RoboChair is a project con-
ducted at the Unitec Institute of Technology, New Zealand.
Fig. 1 shows RoboChair when it is being tested in a corridor.

Fig. 1. RoboChair being tested in a corridor

The motivation for designing this robotic chair comes
from the service robot domain, in particular from health
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care robot domain. Currently, there many robots are being
developed for health monitoring and assessment. HealthBot
robot can do medication reminding, vital signs measurement,
falls detection among many other things [17].

RoboChair is in the form of a wheel chair. But, function-
ally it is a socially assistive companion robot. The features
included in the first version are as follows:

• Voice controlled navigation using fuzzy voice com-
mands

• Vital signs (blood pressure, blood oxygen saturation,
body weight, and bio impedance

• Cardiovascular risk prediction
• Communicating with friends, family, and health profes-

sionals
• Provide companionship through multi-modal interac-

tions
These features are very similar to the features commonly

associated with personal robots. However, the design philos-
ophy of RoboChair is quite different. The authors argue that
it is more beneficial to embed features of socially assistive
companion robots into already useful devices rather than
building completely new robots. Since the core device is
already in use, it is expected that the resistance to user
acceptance would be minimal. However, this hypothesis
should be tested through user trials, which will be the next
step of this research.

The following key requirements were considered in the
design of RoboChair:

• Low cost: Since this robot is intended to be a personal
robot, cost is a primary consideration. Therefore, sim-
pler and cheaper technologies were used.

• Simple user interface: Since the target user group was
older or disabled people simple user interfaces were
used.

• Simple operation: All services provided by the robot
could be accessed via a touch screen. Speech synthesis
was used, but speech recognition was not used.

• Voice controlled navigation: For the convenience of
the users with physical limitations, voice controlled
navigation was included.

• Robustness: The working environment of the service
robot is a domestic setting, where technical support is
not readily available. Therefore, special attention was
paid to the robustness.

• Open-source software: For software development, open-
source software was used. In particular, Robot Operat-
ing System (ROS) was used as the middleware.

Another important design consideration of RoboChair is
the ability to measure body weight. This is a limitation of
almost all existing socially assistive robots designed for the
health care domain. Most healthcare robots help users in
various areas related to health. Medication management, help
quit smoking are some examples. However, weight is an
important measurement in health and inability to measure
the weight of a user is a major limitation.

The first version of RoboChair is shown in Fig. 3(a).

III. ROBOT HARDWARE

The robot presented in this paper is a result of an on-
going project at the Unitec Institute of Technology, New
Zealand. The robot hardware consists of a differential drive
mobile platform, a note book computer (main controller), a
tablet computer (GUI), sonar sensors, microphone, speakers,
a kinect sensor, a laser range finder, a load cell and vital
signs measuring devices. RoboChair is powered by a 24v
Li-Polymer battery.

The tablet mounted on a rotatable mount is the main mode
of interaction with the users. It displays instructional text,
graphics, and video as well as takes user inputs by means of
touch events,

The kinect sensor is used for people detection using cob-
people-detection ROS package [18]. The robots synthetic
speech was generated through Festival open-source speech
synthesis system [19].

IV. SOFTWARE ARCHITECTURE

The software architecture is based on the ROS open-source
framework. An overview of the architecture is shown in
Fig. 3(b).

The architecture comprised of a main controller, GUI gen-
erator, several distributed components and robot hardware.

A. Main controller

The main controller shown in Fig. 3(b) controls the core
behaviour of the robot. It is a Finite State Machine (FSM)
created using SMACH package of ROS [18]. The main
control thread of the robot is in the FSM and it controls
and coordinates all the other distributed components.

Each state is associated with actions, GUI, and events. This
is illustrated in Fig. 2. This representation has similarities

Statei

Events

Actions 

(Physical actions, service requests)

Hello! Jack

CONTINUE

Visual output

Statei+1Statei-1

Events

(user inputs + 

external events)

Speech

Fig. 2. State behavior

with the finite-state-machine based behaviour presented in
[17]. However, there are major difference and improve-
ments in RoboChair software architecture, when compared
to HealthBots Version 2 architecture presented in [17]

In HealthBots Version 2 architecture, robot behaviour and
screen layout definitions are in a single FSM and behaviour
generation and screen generation are done by a single
monolithic software. In RoboChair architecture, the robot
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behaviour description and screen layout generation are sepa-
rated. Still both robot behaviour and screen layout generation
are controlled by a single FSM due to reasons described
in [17], but the actual screen generation and all front-end
activities are done by a separate software component (GUI
generator), coordinating with the main FSM.

It was decided to combine the definitions of robot actions
and screen generation due to following reasons.

Usually, in robotic applications, the GUI is not included
in the robot behaviour design. Instead, the focus is on
robot behaviour such as path planning, navigation, and other
actions. However, in service robot applications, the GUI is a
dominant part of the robot behavior, since the user experience
highly depends on the audio visual output and the interaction
with the robot. Therefore, to have effective human-robot
interaction, robot actions, user inputs, as well as changes
in GUI, should be synchronized [17].

B. GUI generator

GUI generator is a ROS component implemented using
QT-ROS package [18]. IT uses the widely used QT frame-
work for GUI generation.

In RobotChair GUI there are no fixed components. The
main controller determines what should be displayed on the
GUI depending on the current state of the main controller and
sends a message to GUI generator. This is an XML formatted
message that completely describes the screen layout and
components. Upon receiving this, the GUI generator dynami-
cally generates the screen layout required by the current state
of the robot.

C. Distributed components

There are several distributed ROS components to imple-
ment various robot functions. Following are the components
in the current implementation:

• Navigation: This components receives fuzzy voice con-
trolled commands described below and converts these
commands into motor control commands. Then it sends
messages to the micro controller responsible for sending
PWM signals to motor drives.

• Weight measurement: This components receives com-
mands for acquiring weight. IT communicates with the
micro controller responsible for reading the load-cell
output. It returns the weight as a ROS message.

• Blood pressure and pulse rate measurement: This com-
ponents received commands for acquiring blood pres-
sure of a user and then send control signals to a blood
pressure meter. Blood pressure measurement consists
of several steps and this component is responsible for
monitoring and controlling all steps and finally taking
the blood pressure measurement. It returns the systolic
blood pressure, diastolic blood pressure, and pulse rate
as a single ROS message.

• Blood oxygen saturation measurement: Similar to blood
pressure measurement, this module controls a blood
oxygen meter and returns the reading.

• People detection: This component detects the number
of people in front of the robot as a ROS message. This
information is used by the main controller to generate
engaging dialogs.

• Text-to-speech: This components receives text to be
spoken and then generates voice using Festival.

Fig. 7 is a run-time view of main software components
of the system, which was generated using RxGraph ROS
utility..

D. Fuzzy voice controlled navigation

Fuzzy voice controlled navigation is a key feature of
RoboChair. For voice controlled navigation, a fuzzy coach-
player approach is used [20], [21], [22], [23], [24] is used. In
this approach, in a voice command there are two parts; action
and action modification. For the whee chair, go forward, go
backward, turn right, turn left and stop are used as actions
and very slow, slow, fast, and very fast are used as action
modifications.

E. GUI Generator

GUI generator is a ROS component implemented us-
ing QT-ROS package [18]. IT uses the widely used QT
framework for GUI generation. More details about the GUI
generator is given in Section V.

V. DYNAMIC USER INTERFACE GENERATION

In RobotChair GUI there are no fixed components. The
main controller determines what should be displayed on the
GUI depending on the current state of the main controller and
sends a message to GUI generator. This is an XML formatted
message that completely describes the screen layout and
components. Upon receiving this, the GUI generator dynami-
cally generates the screen layout required by the current state
of the robot.

As shown in Fig. 3(b), all software components are con-
nected by ROS middleware. The complete robot behaviour is
controlled by the main controller, by sending and receiving
messages. GUI is yet another component controlled by the
main controller, by sending messages.

As explained in Section IV-A, the main controller is an
FSM developed using SMACH. Some states of the state
machine are associated with GUI. In such states, the main
controller sends messages to GUI and depending on the
messages received, GUI can dynamically generate interfaces,
which consists of text boxes, buttons, images, video clips,
and sound clips.

Figure 5 shows a sample message sent to GUI generator.
This message defines the type, size, location, and proper-
ties of components as well as event associated with some
components such as buttons.

The complete FSM of the robot consists of a large number
of states. Figure 4 shows an example work flow. This shows
state transitions after receiving a scheduled event. Dotted
lines show screens associated with some states.
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Fig. 3. RoboChair and software architecture
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Fig. 4. A sample work flow - receiving a scheduled event

VI. DISCUSSION

The first version of the RoboChair is currently being tested
in the laboratory. A typical user interaction session is shown

in Fig. VI. Although the development of RoboChair has been
completed, so far a user trial has not been done. RoboChair
research group is currently working on this. Some of the
other current works are as follows:
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<components> 

  <textfield x="50" y="50" width="924" textsize="50" background="1" border="1"> 

    Please click on PLAY if you want to watch the following movie clip. 

  </textfield> 

  <movie> 

    ... 

  </movied> 

  <button label="PLAY" width="80" height="30" x="920" y="10" textsize="14" icon="play.jpg"> 

    <event name="clicked"> 

      <action> 

   … 

      </action> 

    </event> 

  </button> 

</components> 

Fig. 5. A sample message sent to GUI generator

Fig. 7. Main software components (ROS nodes)
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Fig. 6. Experimental scenario

• Integration with social networks: Being a companion
robot, RoboChair can help users with disabilities to
be engaged with the society through social networks.
Although the users may not be able to use social
networks directly due to physical limitations, RoboChair
can help them to connect to social networks and use
their features.

• Video conferencing: This is an essential feature, spe-
cially for lonely people in rest homes. The video confer-
encing feature can be used to communicate with family
members, friends and with health care professionals.

• Health monitoring and risk prediction: This is one of the
key application areas of RoboChair, once completed. By
measuring some vital clinical parameters, it is possible
to predict things such cardiovascular risk. Being a
companion a robot, RoboChair can be used to provide
risk information to users, educate them, and help them
to reduce the risk through education.

• Health educational content: As a companion robot,
providing educational information such as medication
information will enhance the usefulness of the robot.
[11]

• Integration with sensor networks (intelligent environ-
ment): By integrating with sensor networks, it is possi-
ble to extend the usefulness of RoboChair by providing
services such as falls monitoring [15].

• HL7 compliance: HL7 is an application layer protocol
used by health information systems. HL7 compliance is
an essential feature of RoboChair since it is necessary to
communicate with existing health information systems.

The above features have been given priority in the current
development work of RoboChair.

REFERENCES

[1] L. Boccanfuso and J. M. O’Kane, “Charlie : An adaptive robot design
with hand and face tracking for use in autism therapy,” International
Journal of Social Robotics, vol. 3, pp. 337–347, 2011.

[2] Y. Yamaji, T. Miyake, Y. Yoshiike, P. R. S. Silva, and M. Okada, “Stb:
Child-dependent sociable trash box,” International Journal of Social
Robotics, vol. 3, pp. 359–370, 2011.

577



(a) Initial interaction 1. (b) Initial interaction 1.

(c) Initial interaction 1. (d) Initial interaction 1.

(e) Initial interaction 1. (f) Initial interaction 1.

Fig. 8. HealthBot robot and test scenarios.

[3] W. Lutz, W. Sanderson, and S. Scherbov, “The coming acceleration of
global population ageing,” Nature, vol. 451, no. 7179, pp. 716–719,
2008, 10.1038/nature06516.

[4] Establishing and Monitoring Benchmarks for Human Resources for
Health: the Workforce Density Approach, ser. Spotlight on Statistics,
no. 6, World Health Organization, Department of Human Resources
for Health, WHO, 2008.

[5] Y. Hasegawa, J. Jang, and Y. Sankai, “Cooperative walk control of
paraplegia patient and assistive system,” in Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Oct. 2009, pp.
4481–4486.

[6] J. Kofinan, X. Wu, T. Luu, and S. Verma, “Teleoperation of a
robot manipulator using a vision-based human-robot interface,” IEEE

Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1206–1219,
Oct. 2005.

[7] K. Kiguchi, T. Tanaka, and T. Fukuda, “Neuro-fuzzy control of a
robotic exoskeleton with emg signals,” IEEE Transactions on Fuzzy
Systems, vol. 12, no. 4, pp. 481–490, Aug. 2004.

[8] W. Shin and D. Kwon, “Surgical robot system for single-port surgery
with novel joint mechanism,” IEEE Transactions on Biomedical En-
gineering, vol. —, no. —, pp. —.

[9] H. Krebs, B. Volpe, D. Williams, J. Celestino, S. Charles, D. Lynch,
and N. Hogan, “Robot-aided neurorehabilitation: A robot for wrist re-
habilitation,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 15, no. 3, pp. 327–335, 2007.

[10] A. Di Nuovo, D. Marocco, A. Cangelosi, V. De La Cruz, and
S. Di Nuovo, “Mental practice and verbal instructions execution:
A cognitive robotics study,” in Proc. The 2012 International Joint
Conference on Neural Networks (IJCNN), 2012, pp. 1–6.

[11] P. Tiwari, J. Warren, K. Day, B. MacDonald, C. Jayawardena, I. H.
Kuo, A. Igic, and D. C., “Feasibility study of a robotic medication
assistant for the elderly,” in Proc. Australasian Conf. User Interface
(AUIC), 2011, pp. –.

[12] I. Kuo, C. Jayawardena, P. Tiwari, E. Broadbent, and B. MacDonald,
“User identification for healthcare service robots: Multidisciplinary
design for implementation of interactive services,” in Social Robotics,
ser. Lecture Notes in Computer Science, S. Ge, H. Li, J.-J. Cabibihan,
and Y. Tan, Eds. Springer Berlin Heidelberg, 2010, vol. 6414, pp.
20–29.

[13] I.-H. Kuo, C. Jayawardena, E. Broadbent, and B. MacDonald,
“Multidisciplinary design approach for implementation of interactive
services,” International Journal of Social Robotics, vol. 3, no. 4, pp.
443–456, 2011. [Online]. Available: http://dx.doi.org/10.1007/s12369-
011-0115-x

[14] A. Tapus, M. Mataric, and B. Scasselati, “Socially assistive robotics
[grand challenges of robotics],” IEEE Robotics Automation Magazine,
vol. 14, no. 1, pp. 35–42, 2007.

[15] C. Jayawardena, I. H. Kuo, U. Unger, A. Igic, R. Wong, C. Watson,
R. Stafford, E. Broadbent, P. Tiwari, J. Warren, J. Sohn, and B. Mac-
Donald, “Deployment of a service robot to help older people,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct. 2010, pp. 5990–5995.

[16] R. Stafford, E. Broadbent, C. Jayawardena, U. Unger, I. H. Kuo,
A. Igic, R. Wong, N. Kerse, C. Watson, and B. MacDonald, “Improved
robot attitudes and emotions at a retirement home after meeting a
robot,” in Proc. IEEE RO-MAN, 2010, pp. 82–87.

[17] C. Jayawardena, I. Kuo, C. Datta, R. Stafford, E. Broadbent, and
B. MacDonald, “Design, implementation and field tests of a socially
assistive robot for the elderly: Healthbot version 2,” in Proc. 4th
IEEE RAS EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob), 2012, pp. 1837–1842.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” ICRA workshop on open source software, vol. 3, no. 3.2,
2009.

[19] A. W. Black, P. Taylor, and R. Caley. (2013, Jul.)
The festival speech synthesis system. [Online]. Available:
http://www.cstr.ed.ac.uk/projects/festival

[20] C. Jayawardena, K. Watanabe, and K. Izumi, “Posture control of robot
manipulators with fuzzy voice commands using a fuzzy coachplayer
system,” Advanced Robotics, vol. 21, pp. 293–328, 2007.

[21] K. Watanabe, C. Jayawardena, and K. Izumi, “Intelligent interface
using natural voice and vision for supporting the acquisition of robot
behaviors,” in Proc. 5th IEEE Conference on Sensors, Oct. 2006, pp.
374–377.

[22] C. Jayawardena, K. Watanabe, and K. Izumi, “Controlling a robot
manipulator with fuzzy voice commands using a probabilistic neural
network,” Neural Computing Applications, vol. 16, no. 2, pp. 155–166,
2007.

[23] ——, “Probabilistic neural network based learning from fuzzy voice
commands for controlling a robot,” in Proc. of International Confer-
ence on Control, Automation, and Systems (ICCAS), 2004, pp. 2011–
2016.

[24] ——, “Knowledge acquisition by a sub-coach in a coach player system
for controlling a robot,” in Proc. of the 4th International Conference
on Advanced Mechatronics, Hokkaido, Japan, 2004, pp. 601–606.

578


