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Abstract— Inspired by the aerial prowess of flying insects,
we demonstrate that their robotic counterpart, an insect-scale
flapping-wing robot, can mimic an aggressive maneuver seen
in natural fliers—landing on a vertical wall. Such acrobatic
movement differs from simple lateral maneuvers or hover,
and therefore requires additional considerations in the control
strategy. Magnetic force was chosen to enable attachment to the
vertical surface due to its simplicity. We show that by learning
from previous failed attempts, the robotic fly could successfully
perch on a magnetic wall after eight iterations.

I. INTRODUCTION

Over the last few decades, insect flight has inspired

scientists and engineers to understand and translate this

ubiquitous form of locomotion into man-made machines.

Flies are a convenient model organism for studying insect

flight—evolving sophisticated flight mechanics and exhibit-

ing exceptional agility and maneuverability. Researchers

have developed a number of biologically-inspired, flapping-

wing flying vehicles [1], [2], including an insect-scale robotic

fly that successfully demonstrated unconstrained but tethered

flight [3].

To date, artificial flapping wing flight at low Reynolds

numbers usually relies on passive stability to achieve hover

[1], [2]. Unlike [1], [2], flying insects and the robotic fly in

[3] are inherently unstable. This instability necessitates active

control, but also leads to increased maneuverability. Thus far,

the robotic fly has only performed basic flight maneuvers

and stable hovering [3], [4], [5], and has yet to demonstrate

any aggressive or acrobatic maneuvers, encountering issues

in control, fast dynamics, and lack of understanding in the

small-scale unsteady aerodynamics.

Other classes of Micro Aerial Vehicles (MAVs) such as

quadrotors and helicopters have demonstrated highly aggres-

sive maneuvers such as flying through narrow vertical gaps

[6], performing multiple flips [7], and inverted flight [8].

In these examples, a common theme in control methods

is “learning”. In [8], reinforcement learning was used with

information from a human pilot’s commands to design a

controller for inverted helicopter flight. In [6], [7], iterative
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Fig. 1. (top) Photograph of a biologically-inspired robotic fly on a finger
with four retro-reflective markers for tracking purposes.. (bottom) A robot
attached to a magnetic wall via the aid of 6mil steel shims attached to the
base of the landing gear.

learning approaches were taken. It is anticipated that similar

strategies could be employed for enabling aggressive aerial

maneuvers with a flapping-wing flying robot.

In this paper, we address the challenge of performing an

aggressive flight maneuver with the robotic fly shown in

figure 1 (top). Specifically, our objective is to design a flight

controller and a simple attachment mechanism to allow the

robot to land, or perch, on a vertical surface as illustrated in

figure 1 (bottom)

The topic of perching an MAV has been addressed previ-

ously at larger scales [9], [10], [11]. In [9], the authors placed

focus on identifying an accurate model of the dynamics

and utilized a value iteration algorithm in the design of the

optimal control policy. Both [10], [11], on the other hand,

emphasized the design of novel attachment mechanisms that

allowed the MAVs to perch within a large flight envelope.

The very small scale and payload capacity of the robotic

fly in this study renders elaborate perching mechanisms as

infeasible options. Fortunately, the use of magnetic force
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becomes more favorable at smaller scales. As length scale

decreases, weight decreases as a cubic function of the

characteristic length, L3 while magnetic force scales as a

function of surface area, L2. Essentially, magnetic forces

dominate gravitational forces at small scales and when the

distances are small (compared, for example, to the charac-

teristic dimension of the object). To exploit this, we attached

small steel discs on the robot to enable the robot to land on

a vertical magnetic surface.

The Iterative Learning Control (ILC) [12] technique was

used in addition to the existing feedback control loop. The

ILC algorithm allows the robot to learn from its previous

flights and improves its flight performance through repetition

of the same trajectory.

In section II, we briefly discuss the properties of the robot,

the control strategies, and the dynamic model of the perching

flight. We then present a method of generating a perching

trajectory followed by the formulation on the proposed ILC

method in section III and IV. Experimental results are shown

in section V followed by discussion and conclusion.

II. ROBOT DESCRIPTION AND CONTROL STRATEGIES

A. Robot Description

The insect-scale flapping-wing robot shown in figure 1

was first presented in [13]. The robot has a wingspan of

3cm and weighs under 100mg. It is fabricated in-house using

the Smart Composite Microstructures (SCM) process. Piezo-

electric bimorph actuators are chosen over electromagnetic

motors for flight muscle due to their favorable scalability

[14]. In the current prototype, the robot is equipped with

two piezoelectric bending actuators, each capable of inde-

pendently driving a single wing. When a voltage is applied

to actuator, it induces motion at the tip of the actuator. This

approximately linear displacement is transformed into an

angular wing motion by a spherical four-bar transmission.

A passive flexure hinge connecting the transmission to the

wing interacts with the inertial and aerodynamic forces acting

on the wing to produce a desired angle of attack, resulting in

lift that enables the robot to fly. The actuator, transmission,

and wing form a mechanical subsystem with a behavior

resembling a second-order linear system [3]. As a result, we

nominally operate the system with sinusoidal signals near the

system’s resonant frequency of 120Hz to maximize the flap-

ping stroke amplitude and minimize reactive power expended

by wing inertia and the hinge stiffness. Lift modulation is

obtained by altering the stroke amplitude. By appropriately

modulating the actuator drive signals, the wing motion can

be governed to create pitch, roll, and yaw torques as desired.

This leaves researchers the task of designing a controller that

determines the required lift and torque to stabilize the robot’s

flight. More details on the robot design and torque generation

schemes can be found in [3], [13].

In this work, we define pitch, roll, and yaw rotations along

the x̂, ŷ, and ẑ axes of the body-fitted right-hand coordinates

as illustrated in figure 2. The inertial coordinate frame is

labeled by X̂ , Ŷ , and Ẑ . A rotation matrix R relates the
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Fig. 2. Definitions of the inertial frame, the body-attached frame, and roll,
pitch, and yaw axes.
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Fig. 3. A block diagram illustrating the feedback control architecture of the
robot. The ILC control block (in dashed lines) is implemented in additional
to the existing closed-loop system.

orientation between the body-fixed frame and the inertial

frame.

B. Control Strategies

Similar to its insect counterparts, the flapping-wing robot

in figure 1 is inherently unstable and requires active feedback

control [15]. We have demonstrated that, even with advances

in the manufacturing process, there are still uncertainties in

the system and noticeable variations from robot to robot.

In [4], it is shown that a controller able to identify and

correct for some unknown parameters can improve the flight

performance by reducing the position errors in hovering

flights by approximately 50% (to less than 1cm).

Achieving a stable hovering flight at this scale is chal-

lenging for a number of reasons: inherent vehicle insta-

bility, extremely fast dynamics, and high susceptibility to

disturbances. From a controls perspective, a hovering flight

is a simplified case of more general maneuvers with no

feedforward components. In order to realize a series of rapid

maneuvers, another controller was designed in [5]. This

controller eliminates the assumption that the attitude dynam-

ics is generally much faster than the lateral dynamics as

typically assumed in MAV literature [1], [6], while retaining

an adaptive ability that was found to be crucial for flight at
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speed

Fig. 4. A schematic diagram demonstrating how the robot can perch on a
vertical wall. Initially it needs to build up sufficient forward momentum to
retain it when the robot rotates to the opposite direction at the moment of
landing on the wall.

this scale.

In this paper, we employ this controller for preliminary

trajectory following. The simplified block diagram is shown

in figure 3. Since the dynamic model of the robot assumed

by the controller is not sufficiently accurate to capture high-

frequency dynamics, additional steps are required to realize

more aggressive maneuvers such as perching on a vertical

wall. The approach we take here is iterative learning control,

which can be implemented in additional to the current closed-

loop system as highlighted in figure 3. Feedback is executed

in real time, whereas the iterative control part is updated

offline between flights.

C. 2D Model of Perching Flight

To simplify the problem of landing on a vertical wall, we

restrict our analysis to the two dimensional plane defined as

X̂ − Ẑ in the inertial coordinate frame. The state variables

of interest consists of the position and velocity of the robot

along the X̂ and Ẑ directions, the tilt angle (θ) of the robot

defined as the angle between the ẑ axis and the Ẑ axis as

projected onto the X̂ − Ẑ plane (with ẑ tilted in the −X̂
direction defined as positive), and the normalized thrust (with

the dimension of acceleration) produced by the robot (Γ).

The vector containing state variables is denoted as X and is

given in equation (1).

X =
[

X Ẋ Z Ż θ θ̇ Γ
]T

. (1)

The dynamics of θ̇ are assumed to depend on the nor-

malized projected torque τ̄ as θ̈ = τ̄ and the thrust is

related to the thrust input T by the first order dynamics as

Γ̇ = −γ (Γ− T ) for a positive constant γ. Therefore, T and

τ̄ are regarded as two inputs to the system:

U =
[

T τ̄
]T

. (2)

The robotic fly is an under-actuated system, similar in some

regards to quadrotors [6], [7]. To maneuver laterally, the

robot must tilt its body so that the thrust vector takes on

a lateral component. Moreover, we assume a linear damping

term in the lateral dynamics. As a consequence, the time

derivative of the state vector X can be found from the

following expression:

d

dt









Ẋ

Ż

θ̇
Γ









=









−Γ sin θ − ξẊ
Γ cos θ − g

τ̄
−γ (Γ− T )









, (3)

where ξ is a damping coefficient and g is the gravitational

constant. This equation formulates a framework for the

analysis of trajectory generation and ILC in sections (III)

and (IV).

III. TRAJECTORY GENERATION

One requirement for perching on a vertical surface is to

find a plausible trajectory that satisfies the constraints im-

posed by the dynamics of the robot as given in equation (3).

To land on a vertical surface, there are some specifications

on the trajectory, particularly at the end of the trajectory.

The robot has to come to contact with the wall at steep

tilt angle (preferably larger than 45◦). Hence, it requires to

generate significant amount of torque at the very end of

the trajectory. Since the torque generated is coupled with

the thrust, this would decelerate the robot and potentially

causes it to move away from the wall at the same time.

Consequently, to perch on a wall, the robot has to carry

sufficient forward momentum to assure that the robot does

not move backwards. A schematic diagram illustrating a

perching trajectory is shown in figure 4.

Mathematically, the problem can be reformulated as an op-

timization problem with a quadratic cost structure. Though,

the true purpose of the proposed framework in this section is

to find a feasible (or locally optimal) trajectory that satisfies

the constraints rather than searching for the truly optimal

trajectory. Here, the cost function J is comprised of an

instantaneous cost g (·) and a terminal cost h (·). These can

be expressed in term of the desired states as written in

equation (4)

J =

ˆ

g (X,U) dt+ h (XT )

=

ˆ

[

X U
]

Λg

[

X U
]T

− λgẊ dt (4)

+(XT −XT,ref )
T
ΛgT (XT −XT,ref )− λgT ẊT ,

where XT and XT,ref denote the terminal state vector and

the desired terminal state vector, Λg, ΛgT , λg , and λgT

are diagonal matrices and scalar constants. The presence

of Λg ensures that the robot always maintains a reasonable

altitude and imposes soft constraints on the input signals.

The term λg encourages the robot to build up a forward

velocity. Similarly, the final cost enforced by ΛgT and λgT

influences the optimizer to search for a trajectory that ends

at a desired landing position and orientation with some final

forward velocity.

A common practice for such optimization problems is to

confine the search space. In this circumstance, we limit the

inputs to be polynomial functions of time as:

Γ =

(

i=NΓ
∑

i=0

ait
i

)2

τ = Γ

i=Nτ
∑

i=0

bit
i, (5)

here ai and bi are polynomial coefficients to be searched

for. The use of polynomial structure has some benefits.

For instance, by constraining b0 to zero guarantees that a
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robot starting in the upright orientation will have dX/dt =
d2X/dt2 = d3X/dt3 = d4X/dt4 = 0 and the trajectory is

smooth at the beginning. Notice the quadratic structure of the

thrust which is implemented to force the thrust to always be

non-negative. Also, the existence of Γ in the expression of

τ renders the model to be more realistic as the generation of

torque is coupled with the generated thrust in the flapping-

wing robot.

To find a locally optimal solution of equations (4) and (5)

using gradient methods, the difficulty lies on a procedure for

calculating a Jacobian. Here we compute the gradient with

the Real-Time Recurrent Learning (RTRL) method [16], [17].

To begin, we express the dynamics of the state vector as

Ẋ = f (X,U). For a parameter to optimize α (which could

be ai or bi), we have

∂

∂α

(

Ẋ

)

=
d

dt

(

∂X

∂α

)

=
∂f

∂X

∂X

∂α
+

∂f

∂U

∂U

∂α

=
d

dt
P =

∂f

∂X
P +

∂f

∂U
Q,

(6)

where P and Q have been defined as ∂X/∂α and ∂U/∂α
respectively. According to equation (4), the Jacobian ∂J/∂α
is then simply given as

∂J

∂α
=

ˆ

(

∂g

∂X
P +

∂g

∂U
Q

)

dt+
∂h

∂X
P +

∂h

∂U
Q. (7)

It is straightforward to obtain ∂f/∂X and ∂f/∂U from

equation (3). Thus, by integrating forward equation (6) to

find P , the gradient ∂J/∂α can be evaluated from equation

(7). To perform a gradient descent, the cost function is

expanded to its second order approximation as

J (α+ δα) ≈ J (α)+

(

∂J

∂α

)T

δα+
1

2
δαT

(

∂2J

∂α2

)

δα. (8)

Inspired by the Gauss-Newton algorithm, here we opt to

approximate the Hessian by taking a derivative of equation

(7) with respect to α again but neglecting the ∂2P/∂α2 and

∂2Q/∂α2 terms. This reduces the complexity and the com-

putational time. It follows that we can then solve equation

(8) for an incremental change in α:

δα = −η

(

∂2J

∂α2

)−1
∂J

∂α
.

The step size parameter η keeps the update gradual, which

improves the stability. Performance could also be tweaked

by altering the cost and the reference state.

IV. ITERATIVE LEARNING CONTROL

FOR PERCHING ON A VERTICAL SURFACE

After each flight iteration, the recorded trajectory is an-

alyzed for the iterative learning controller to compute a

set of corrective commands as inputs for the next flight

so that the flight trajectory will eventually converge to the

reference trajectory. The major distinction between a closed-

loop controller and the iterative learning controller is that

the former does not primarily learn from prior experiences

(except for the adaptive part, nevertheless, the adaptive

algorithm is not time or trajectory specific). The learning

controller, on the other hand, relies solely on repetition and

repetitive disturbances or systematic errors in the modeling.

To consider a whole trajectory, we consider the dynamics

using a lifted representation, similar to the approach taken in

[18]. That is, we discretize and consolidate the state vectors

and the inputs into a long vector given by the following

X
∗ =

[

X(t1) X(t2) . . . X(tN )
]T

U
∗ =

[

U(t1) U(t2) . . . U(tN )
]T

. (9)

The model of the lifted dynamics is given by a function

f∗ (·). If we assume a perfect model, then the reference

trajectory X
∗

ref can be realized using a feedforward input

U
∗

ff as

Ẋ
∗

ref = f∗
(

U
∗

ff

)

. (10)

In reality, it is not anticipated that the model will be perfect.

Instead of attempting to find a better model, we assume that

the input into the system can be regarded as a combination of

the command input and the unknown disturbance input U∗ =
U

∗

c −U
∗

d, and the ultimate goal of the algorithm is to find

the estimate of the unknown disturbance input Û
∗

d. When

we have an accurate estimate of the unknown disturbance

input, we can achieve the reference trajectory by using the

command input U∗

c = U
∗

ff + Û
∗

d as given below:

Ẋ
∗ = f∗ (U∗)

= f∗ (U∗

c −U
∗

d)

= f∗

(

U
∗

ff + Û
∗

d −U
∗

d

)

. (11)

In order to calculate the unknown disturbance input, we first

define the estimation error at iteration j as

Ũ
∗

d,j = Û
∗

d,j −U
∗

d. (12)

Then the lifted dynamics equation can be expanded about

the ideal operating point U∗

ff ,

Ẋ
∗

j ≈ f∗
(

U
∗

ff

)

+

(

d

dU∗
f∗

∣

∣

∣

∣

U∗

ff

)

· Ũ∗

d,j . (13)

The quantity on the left hand side of equation (13) could

be obtained by post-processing the recorded trajectory. The

difference of the measured Ẋ
∗

j and Ẋ
∗

ref forms an error

vector ej that is a function of Ũ∗

d,j

ej = Ẋ
∗

j − Ẋ
∗

ref =

(

d

dU∗
f∗

∣

∣

∣

∣

U∗

ff

)

Ũ
∗

d,j = F Ũ
∗

d,j .

It can be seen that matrix F is only a function of the

reference trajectory and independent of the current trajectory,

so it only needs to be computed once. At this point, we

propose an update law for the estimate of U
∗

d for the next

iteration:

Û
∗

d,j+1 = Û
∗

d,j − FT∆ej ,
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for some positive diagonal matrix ∆. It follows that we could

express the l2-norm of the error vector from two consecutive

iterations as

e
T
j+1ej+1 = e

T
j

(

I − FFT∆
)T (

I − FFT∆
)

ej .

Since FFT is always positive definite, for a sufficiently small

∆, the norm of the error vector always decreases. In other

words, we have

e
T
j+1ej+1 ≤ σeTj ej for ∃ 0 ≤ σ < 1.

In this implementation, F can be computed by repre-

senting the robot’s dynamics given by equation (3) along

the reference trajectory using a Linear Time Varying (LTV)

configuration.

Ẋ(t) = A(t)X(t) +B(t)U(t),

and the matrix F is simply given by

F =









∂ft1
∂U1

· · ·
∂ft1
∂UtN

...
. . .

...
∂ftN
∂U1

· · ·
∂ftN
∂UtN









=







F(1,1) · · · F(1,N)

...
. . .

...

F(N,1) · · · F(N,N)






,

where the elements can be shown to be

F(m,n) =















0 if m < n

B(tn) if m = n

B(tn)
∑j=m

j=n+1

(

∏i=m

i=j A(ti)dt
)

if m > n.

A. Consideration of Initial Conditions

In the previous section, it is shown that the norm of

error vector should gradually decrease after each iteration.

However, the presented analysis assumed that each trajectory

always starts with the same initial conditions, in a way that

minimizing the error in Ẋ
∗ is sufficient to bring the actual

trajectory close to the reference trajectory. In our case, where

the initial condition involves a robot hovering in place, that

condition is approximately satisfied for the tilt angle and the

initial velocity, but not for the position. In our prior work, it

was shown that the RMS of the position error during hover

was just below 1cm [4]. This means that even if the error

vector becomes zero, the robot could end up attempting to

perch up to one centimeter away from the wall.

To avoid a situation similar to the one mentioned above,

we allow the robot to initialize a perching attempt only when

the attitude is stable as measured by a metric given by the

controller in [5]. Furthermore, when the starting position is

not zero, trajectory tracking will not start from the beginning

of the pre-planned trajectory. To demonstrate, suppose the

robot starts perching at time t0 with X(t0) = X0 and the

reference trajectory is defined for Xref (t
′) for 0 ≤ t′ ≤ Tf ,

we seek to find t′0 that satisfies the equation

X0 = Xref(t
′

0) +

ˆ Tf

t′
0

Ẋref (t)dt,

and command the robot to follow the trajectory from

Xref (t
′

0) to Xref (Tf ). The idea is that, to a first order

approximation, the extra distance at the beginning would

eventually be cancelled out by the deficit in the initial

velocity. As a result, the robot’s trajectory will not match

the reference at the beginning (X (t0) 6= Xref (t
′

0)), but the

discrepancy should theoretically diminish towards the end.

B. Implementation in Three Dimensions

In practice, the controller only takes into consideration

the direction of the ẑ axis of the robot and does not directly

control the heading direction (yaw orientation) of the robot.

In other words, the robot would need to perform both

pitch and roll maneuvers to realize the reference trajectory

depending on its current orientation. In the case that the robot

follows a trajectory to perch on a wall in the positive X̂
direction, the reference torque input τ̄ points along a negative

Ŷ direction. With the knowledge of the current orientation

of the robot and the assumption that the moment of inertia

along the pitch and roll axes are approximately equal, it is

possible to find a combination of pitch and roll torques in the

body frame that point in the −Ŷ direction with the specified

magnitude.

V. EXPERIMENTS

A. Experimental setup

The current prototype of the robotic fly is not fitted with

sensors, power source, or controller units. Without such

components, the robot is operated in a laboratory environ-

ment and depends on an external motion capture system

to provide position and orientation feedback. Eight VICON

cameras running at 500Hz—covering the tracking volume of

0.3 × 0.3 × 0.3m—track the position of four retroreflective

markers placed on the robot and triangulate the pose of the

robot. Control computation is carried out on a computer

running an xPC target (MathWorks) environment at the rate

of 10kHz. Power is supplied to the robot via a bundle of

four 51-gauge copper wires from a high voltage amplifier

that receives a command from the xPC target with a digital-

to-analog converter. The effect of the wire tether is not taken

into consideration due to its unpredictable nature. However,

simple calculations suggest its contribution should not affect

the flight dynamics significantly. Direct measurements of the

robot’s velocity and rotation rates are not available, so they

were substituted by their filtered derivative representations.

B. Trajectory Optimization

Initially, the perching trajectory is crudely hand-designed

with a target distance near 12cm from the starting posi-

tion and the trajectory duration of 0.65s. This was then
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Fig. 5. A candidate trajectory for perching. The grey lines show a
parametrized version of a hand-designed trajectory. Black lines represent
the final trajectory after the optimization.

parametrized by polynomial functions as given by equation

(5) with NΓ = 8 and Nτ = 12. The parametrized trajectory

is illustrated with grey lines in figure 5. Next, the trajectory

is optimized using the strategy proposed in section III and

the results are shown as black lines in figure 5. It can be

seen that the most significant difference is in the terminal

velocity which is, in fact, negative before the optimization.

The optimized thrust is also small at the end. Understandably

this is in order to reduce the amount of deceleration and

preserve the forward momentum. The resultant trajectory is

11.4cm long with the projected terminal tilt angle close to

90◦.

C. Landing Mechanism

The magnetic wall was constructed from a flexible mag-

netic sheet manufactured from Ferrite bonded with synthetic

rubber. This type of magnet is generally classified to have

very low magnetic pull. The maximum pull (defined as the

maximum pull force to a thick flat steel plate in an ideal

laboratory condition) is 1100kg·m−2. On the robot, four

discs of 6mil (0.15mm) steel shims, each with a diameter

of 2mm, were attached to the landing gear. This brought up

the total weight of the robot from 80mg to 100mg.

We experimentally found that one disc of steel shims

could hold a weight of up to 230mg. In an ideal case–

neglecting a force required to counter any kinetic energy–,

a simple calculation reveals that one disc must be able to

support at least ≈ 60mg to hold the robot to the wall in a

static condition. Taking other factors into consideration, the

strength of the magnet and the size of the steel shims offer

appropriate attraction for the landing task. Furthermore, the

field of a magnetic sheet is expected to decay faster than that

of a magnetic dipole, which is a cubic function of distance,

or r−3 [19]. As a result, the contribution of the magnetic

force should be negligible when the robot is not in contact

with the magnetic wall.

D. Experimental Results

Prior to perching experiments, the robot has to be verified

for its flight capability. This involves the characterization of

the robot’s flapping amplitude at various operating frequen-

cies. After validating that the robot possesses sufficiently

large and symmetrical flapping amplitudes on both wings, the

robot needs to be trimmed for flight. The trimming process

starts with short, unstable open-loop flights that each lasts

less than 0.4s to determine a set of driving signals that

minimize the residual torque exhibited by the robot, due to

unavoidable mechanical asymmetries. That is followed by

a closed-loop trimming process, in which the adaptive part

of the controller corrects for torque offsets further until the

robot can hover with position errors on the order of 1cm or

less.

We must ensure the robot will start its trajectory on or

somewhere in front of the prescribed perching trajectory’s

starting point. Because of this 1.0cm uncertainty in the

starting position of the robot, we actually define the start

of the trajectory to be at -1.0cm from the hovering setpoint

of the robot at 0cm. The target vertical wall is placed at

10.4cm from the hovering setpoint. The controller allowed

the perching attempt to begin only when the robot is less than

one centimeter away from the setpoint (−1.0cm ≤ X ≤

1.0cm). Thus, given the 11.4cm prescribed trajectory, the

robot will start with an initial condition lying in front of the

trajectory’s starting point.

The first perching flight (iteration 0) was executed with

no correction from the ILC algorithm. The plots of this

iteration’s trajectory are illustrated in figure 6(a). The robot

only reaches a distance of 6.3cm and a tilt angle of 41◦

before falling out of the air.

In the iteration 1, after implementing the first estimate of

U
∗

d, the robot could get closer to the wall, i.e., it achieved the

distance of 8.5cm before losing all the forward momentum,

at which point the robot had a tilt angle of 78◦. The

corresponding trajectory is shown in figure 6(b).
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Fig. 6. Recorded trajectories accompanied by composite images constructed from the videos. References are shown in grey lines and the actual trajectories
are in black lines. (a) The trajectory obtained without any command from the ILC algorithm. (b) The trajectory generated after one learning iteration. (c)
A successful trajectory obtained after 8 iterations of learning. (c) A failed perching attempt obtained from the same command as in (c).

Due to the nature of the experiment and the delicate

character of the robot, it is impossible to ensure that physical

properties of the robot remain unaltered over the course of

several flights. Sources of uncertainty include mechanical

fatigue of the wing hinges, wings, and actuators (which

unfortunately do occur in the timescale of the experiments),

structural damage from crashing to the ground, and electrical

connection failure due to wire fatigue. After subsequent

repairs to the robot, flight trimming experiments must be

repeated—allowing the adaptive part of the controller to trim

the robot for a good operating condition.

On this occasion, both wing hinges on the robot mechan-

ically failed after 6 iterations just as the robot was nearing

a successful perching trajectory. The authors replaced both

wing hinges and wings and carried out the trimming process

to achieve a steady hover again. It is noted that the operating

point of the repaired robot was different than that of the robot

prior to wing hinge failure.

Using the same command resulted in slightly different

trajectories compared with those obtained before wing hinge

failure. Nevertheless, we carried on applying the ILC algo-

rithm and updated the estimate of U
∗

d from the previous

iteration instead of resetting the iterative process. After two

subsequent iterations (iteration 8), the robot successfully

landed on the vertical wall. A few subsequent flights using

the same command resulted in a mix of successful and

failed wall perchings. One example of a successful attempt

is demonstrated in figure 6(c). In this attempt, the robot first

contacted the wall when the tilt angle was around 45◦. A

failed perching is also presented in figure 6(d). The recorded
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trajectory reveals that the robot missed the target setpoint by

1-2mm. This also suggests that the effect of the magnetic

force is minimal when the robot is not attached to the wall.

VI. DISCUSSION AND CONCLUSION

In this work, we have shown that a centimeter-scale,

flapping-wing flying robot is capable of performing an ag-

gressive aerial maneuver—perching on a vertical wall. From

a controls perspective, such a maneuver differs considerably

from hover or slow maneuvers that have been demonstrated

before. To land on a vertical surface, first we constructed a

nominal perching trajectory via an optimization method that

assumes a simplified dynamics model in two dimensions. For

control, we opted to implement an iterative learning control

algorithm in addition to the existing adaptive flight controller.

This learning algorithm computed an updated feedforward

command for the robot after each perching attempt, in

order to improve the trajectory tracking performance in an

iterative fashion. Due to stringent payload constraints and

scalability challenges, magnetic force was utilized as the

wall attachment mechanism, enabling the robot to perch

on a vertical magnetic surface. The magnetic force is only

sufficient to hold the robot when it makes surface contact and

has an insignificant effect on broadening the flight trajectory

envelope for successful wall perches. It is shown that after 8

iterations, the proposed control strategies enabled the robot

to successfully land on a vertical surface as desired.

Without the learning algorithm used in this paper, the

existing controller is unable to command the robot in fol-

lowing the prescribed trajectory. Understandably, like most

controllers, the dynamic model assumed by the previous

controller only accurately captures slow system dynamics,

lacking fidelity for unmodeled high frequency components

required to perform an aggressive maneuver. Yet, this nom-

inal model is sufficiently accurate to form a basis for the

search for a feasible trajectory and the learning process to

compensate for the inaccuracies by repeating the trajectory

following attempts taking into consideration only the first-

order approximations of the dynamics. We show that the

robot is able to land on a vertical surface—a task that requires

millimeter-accuracy for a robot in which the position error of

its stationary hovering flight is in the range of one centimeter

[4].

The utilization of magnetic force is convenient for a

robot at this scale because its implementation adds mini-

mal payload. Unfortunately, while it is sufficient to enable

demonstrations of aggressive trajectory-following, it does not

allow the robot to autonomously takeoff from the wall’s

surface. A more finely tuned or altogether different attach-

ment mechanism is needed. It is nontrivial to construct a

detachable attachment mechanism similar to those seen in

[20], [21], let alone at this much smaller scale. However, we

predict that once a more elaborate attachment mechanism

is developed, the control strategy illustrated in this paper is

suitable for direct application.
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