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Abstract— In this work, we present a motion control scheme
for a robotic mobile platform using low-cost vision sensor
to update encoder values. We track the pose of a power
wheelchair using wheel encoders along with a Microsoft Kinect
camera. Two methods of pose estimation are implemented
and tested. These methods are a) encoder-based odometry
and b)ICP(Iterative Closest Point)-based updated odometry.
We evaluate the performance of each method using precise
wheelchair pose ground truth data acquired via a state-of-the-
art VICON R© system with eight motion capture cameras. Offline
data processing is performed to refine the ICP parameters
and estimate the covariance matrices of the Kalman filter. The
offline data processing results demonstrate that our ICP-based
updated odometry has very accurate pose tracking. By imple-
menting our control scheme, the position error is improved by
a factor of 15 and the localization orientation error is improved
by a factor of 13. In online implementation, there was 4 times
improvement for both position and orientation angle estimation.
To demonstrate the robustness of our approach, we apply it for
online obstacle avoidance. A wheelchair-mounted robotic arm
(WMRA) is also included in this platform and will be used for
future work on combined mobility and manipulation control
with sensor assistance.

I. INTRODUCTION

Localization, i.e. estimating the position and orientation
(pose) of a mobile robot from sensory data, is an active
problem in autonomous mobile robots. A mobile robot has to
accurately localize itself relative to its surrounding environ-
ment at all times in order to navigate safely and efficiently.
Without an accurate localization, autonomous navigation and
obstacle avoidance will be impossible [1], [2]. In literature,
there are varieties of sensors, techniques and models that
have been employed to handle this problem.

The dead reckoning method, commonly referred to as
odometry, is the common practice for localizing mobile
robots. In this method, the current robot pose is computed
incrementally by knowing the previous pose and a measure
of the movement that is carried out by the robot. It is
well known that odometry is subject to many sources of
measurement errors which make it impossible to maintain an
accurate estimate of robot pose over long paths. Therefore,
measuring and correcting systems inaccuracies and sensors
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errors is crucial for increasing the precision of the localiza-
tion procedure.

Maintaining a good localization precision for a moving
platform with the presence of high inaccuracies in the kine-
matic model and the motion control is a challenge, especially
if this mobile platform is used for assisting individuals
with disabilities. In this paper, we present a comprehensive
study of modeling, measuring and correcting localization
errors by using two inexpensive sensors. These sensors are
wheel encoders and Microsoft Kinect camera. We also design
and implement a corrected encoder-based motion control
scheme and present its effectiveness in compensation of
encoder localization errors. They are used to control the
wheelchair mounted Robotic arm (WMRA) system [3]. The
WMRA system is an assistive device mainly used for helping
individuals with limited upper mobility to perform activities
of daily living (ADL). This device is a 7 degree of freedom
(DoF) robotic arm attached to a power wheelchair. Fig. 1
shows the first prototype WMRA I. Throughout this paper,
mobile platform and wheelchair is used interchangeably.

II. BACKGROUND

As mentioned earlier, localization is a key problem in
mobile robot navigation. This problem has gained a lot of
interest in recent years. Generally the localization problem
is solved by relative or absolute techniques [4]. The absolute
positioning methods use features from the environment such
as navigation beacons, landmarks, and GPS to determine the
mobile platform location. The relative positioning methods
use measurements from sensors that do not use any envi-
ronment cues such as wheel encoders, accelerometers, and
gyroscopes [5]. Relative positioning is simple, inexpensive
and easy to achieve in realtime. However, it suffers from

Fig. 1: Wheelchair Mounted Robotic Arm (WMRA I).
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accumulating errors without bound over time and/or distance.
These errors are due to navigation on irregular ground or
smooth floor which causes the wheels to slip or slide. Lo-
calization using encoders readings can cause 20%-25% error
in pose estimation [6]. However, in case of absolute position
estimation, the error accumulation rate will be eliminated
when the measurements are available due to the fact that the
pose is externally determined. As a result, the error is not
accumulated while the robot travels [6]. One example of the
absolute position estimation is visual odometry.

Visual odometry, sometimes in literature referred to as
ego-motion estimation, is a method in which the pose of
a mobile robot is determined by using image information.
In this method, computer vision algorithms [7], [8], [9] are
used to estimate a 6 DoF pose of a moving camera frame
by analyzing a sequence of video frames. It is primarily
tracking visual features from one video frame to another and
instantaneously determining the camera pose. By projecting
the camera pose to the robot’s coordinate frame, the pose
of the robot based in a global coordinate frame can be
estimated. One of these vision algorithms is ICP (Iterative
Closest Point), which was introduced by Besl et al. [10],
[11] in the 1990s. The ICP algorithm is a well-known
algorithm for point set registration [12][13].To improve the
ICP outcomes, Hervier et al, in [14] proposed to fuse the
ICP with measurements from other motion sensors by using
the Kalman filter [15].

One of the most widely used approaches for sensor fusion
is the Kalman filter. In [16], Chen presents a review of
contributions of Kalman filtering in solving mobile robot
problems such as localization, mapping and navigation. In
literature, many authors have fused motion sensor measure-
ments with vision sensor data for mobile robot localization
using the Kalman filter [14], [17], [18], [19]. In these
works, often different types of motion sensors (i.e. encoders,
accelerometers, and gyroscopes) are combined with vision
sensors.

Recently, the assistive navigation systems for individuals
with disabilities became a new area of research in mobile
robotics [20]. Many studies have been undertaken to design
smart wheelchairs with different levels of autonomy to assist
people with disabilities in performing their ADL.

Power wheelchairs are designed for manual operation
which depends on human control and perception [21]. These
wheelchairs lack precise motion hardware, such as built-
in encoders, and precise motion controllers. As stated by
Simpson et al, in[22], most smart wheelchairs that have
been developed from power wheelchairs need major mod-
ifications to operate properly. These modifications involve
adding sensors and by-passing the wheelchair’s controller
to directly control the wheelchair’s motors. As a result, a
wheelchair without any major modification is determined to
be a mobile platform that is highly inaccurate for precise
motion or autonomous operation.

Although there are some similarities between our approach
and the aforementioned works, there are major differences.
We do not manipulate the environment by using artificial

landmarks for localization [17], [23], and we do not modify
the mobile platform ( power wheelchair) to be more suitable
for autonomous motion. In addition, we not only detect the
localization error, but also design a control scheme to correct
it. Furthermore, we test and evaluate our design of motion
control scheme in a real-world mobile platform application,
which demonstrates the robustness of our approach. More-
over, our approach evaluations are compared against a highly
accurate measurement of wheelchair motion ground truth
using a state-of-the-art VICON R© system with eight motion
capturing cameras.

The remainder of this paper is organized as follows: The
localization methods used in this paper are described in
section III. In section IV, we introduce the motion control
scheme that utilizes the localization methods for compensat-
ing odometry errors. Experimental procedures and discussion
are introduced in section V. Finally, the conclusions are
presented in section VI.

III. WHEELCHAIR POSE ESTIMATION METHODS
Two methods are used to estimate the wheelchair location

and heading: encoder-based odometry and ICP-based odom-
etry. These methods are implemented using two inexpensive
sensors which are wheel encoders and vision sensor. The
wheel encoders are ball bearing optical shaft encoders H5
from US DIGITAL [24]. The vision sensor is Microsoft
XBOX 360 Kinect camera [25]. This camera is able to
capture 30 frames per second with a resolution of 640X480
pixels. For each pixel, the Kinect measures the associated
depth information by projecting a pattern of infrared lights
and use stereo triangulation to calculate the depth. Fig.2
shows a flowchart that illustrates the steps of the two pose
estimation methods.

In the encoder-based odometry, measurements of optical
encoders mounted on each driving wheel were used for cal-
culating the transformation matrix between two consecutive
wheelchair frameswi−1

wi T (refer to Fig.3 ). We refer to this
transformation matrix as the local transformation matrix. The
same transformation matrix was determined by applying the
ICP algorithm on two consecutive overlapped Kinect point
clouds. The Extended Kalman Filter (EKF) was used to fuse
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the two local transformation matrices to get the optimized
local transformation matrix which was used to calculate
the ICP-based odometry. Then the encoder-based odometry
was updated with ICP-based odometry. The following is a
detailed explanation of these two methods:

A. Encoder-based odometry

Encoders are used to track the wheelchair global pose
[Xi,Yi,γi]

T by measuring the angular displacement of the right
wheel θri and the left wheel θli , where Xi and Yi are the X and
Y global coordinates of the wheelchair respectively, and γi is
the wheelchair orientation angle. Throughout this paper, the
subscript i means the ith instance in the wheelchair motion.
These two angular displacements are computed using the
encoders readings from both wheels. The distance traveled
by the left and right wheels are Li = wrθri and Ri = wrθli
respectively, where wr is the wheel radius in meters. The
pose of the wheelchair [Xi,Yi,γi]

T relative to a global frame
as can be computed by using (1)

 Xi
Yi
γi

=

 Xi−1
Yi−1
γi−1

+


ri

[
sinγi−1− sin

(
γi−1 +

Ri−Li
wb

)]
ri

[
cos
(

γi−1 +
Ri−Li

wb

)
− cosγi−1

]
Ri−Li

wb


(1)

the symbol ri represents the instantaneous radius of curva-
ture, where ri =

wb
2

(
Li+Ri
Li−Ri

)
and wb is the wheel base. This

model is similar to the model represented in [26]. For further
details on the wheelchair kinematic model, refer to [3].

B. ICP-based odometry

As it is illustrated in Fig.2, the ICP-based odometry was
obtained in two steps:

1) ICP-based local transformation matrix: The alignment
of two point clouds, also referred to as registration, means

finding the transformation matrix
[

R t
0 1

]
(rotation matrix

R and translation vector t) that will transform one data set
to the other. Thus, given two data sets, one is a target data
set denoted as M , {−→mi}Nm

i=1 with Nm points, and the other
is a source data set denoted as P , {−→pi}

Np
i=1 with Np points.

The goal is to find the transformation parameters between the
two point sets in which the error between the transformed
source data and the closest points in the target data will be
minimum.

Fig. 3: Wheelchair and Kinect coordinates frame reative to the Global
coordinate frame.

Knowing the transformation matrix between each two
consecutive frames (see Fig 3) by applying a registration
process, the pose of a mobile platform can be tracked.
Using the ICP algorithm, the registration process is usually
composed of two stages: coarse and fine alignments. The
coarse alignment is implemented for roughly aligning the two
frames by using, for example, feature matching or encoder
measurements. This makes the ICP algorithm faster for the
fine alignment and avoids local minima.

In this work, registration using the ICP algorithm was
applied to the two consecutive point clouds captured by
the Kinect. The following is to illustrate how the local
transformation matrix was determined based on the ICP
algorithm. Refer to Fig. 3 for the equations’ variables.

First, point clouds associated with Kinect coordinate
frames Ki−1and Ki were captured. They were initially aligned
using the local transformation matrix of the current Kinect
frames relative to the previous Kinect frames ki−1

ki
Tencoder

which can be determined using (2).wi−1
wi T encoder can be cal-

culated form (1) by assuming Xi−1 = Yi−1 = γi−1 = 0.
ki−1

ki
Tencoder =

w
k T−1 wi−1

wi Tencoder
w
k T (2)

where w
k T is the transformation matrix of the Kinect frame

relative to the wheelchair frame. The perfection of the initial
alignment depends on how accurate the wheel encoders are.
The initial misalignment was obviously noticed during rota-
tion motion more than the translation. This indicates that the
encoder-based odometry is more accurate during translation
compared with rotation. Second, the ICP algorithm was
applied on the encoder-aligned Kinect point clouds to get
a 6 DoF fine-alignment transformation matrix, TICP. This
transformation matrix is a compensation for any error in
the local transformation matrix determined from encoders
measurements. The overall transformation matrix between
the previous and current Kinect point cloud is:

ki−1
ki

TICP = TICP
ki−1

ki
Tencoder (3)

The local transformation matrix between two consecutive
wheelchair frames Wi−1 and Wi can then be determined as
follows (refer to figure 3):

wi−1
wi T ICP = w

k T ki−1
ki

TICP
w
k T−1 (4)

The accuracy of the local transformation depends on how
accurate the registration process is. ICP algorithm sometimes
fails in perfectly aligned Kinect point cloud, which leads to
inaccurate estimation of the local transformation matrix. To
smooth the pose estimation of the wheelchair, the Kalman
filter is used to fuse the measurements from wheel encoders
and ICP algorithm.

2) ICP-based odometry: As shows in Fig.2, the Extended
Kalman Filter (EKF) is applied to fuse the two measure-
ments of the local transformation matrices determined from
encoder-based odometry, wi−1

wi Tencoder, and the ICP algorithm,
wi−1

wi TICP. These transformation matrices are relative to the
wheelchair local frame. This means that the previous state
vector has no effect on the current state vector. In this work,
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EKF filter deals with the following model:{
Si = f (0,ui,wi)
yi = h(Si)+ vi

(5)

where Si = [∆Xi ∆Y i ∆Zi ∆α i ∆β i ∆γ i]
T is the state vector at

instance i. wi and vi are supposed to be zero-mean Gaussian
noises for the system and measurements respectively. f (.)
and h(.) are the models of the system and the measurements
respectively. yi is the vector of measurements returned by
the sensor. For each iteration, the EKF calculates the best
estimate of the state vector in two stages:
Prediction stage:{

Ŝi = f (0,ui,0)
P̂i = (∇si

F) Pi ( ∇si FT )+Wi
(6)

where F(.) is the Jacobian matrix that linearizes the system
model f (.), P̂i is the covariance matrix for predicted state
vector Ŝi, and Wi is the covariance matrix of the system
noise wi. The predicted state vector is calculated from system
model (1) by eliminating the previous state vector variable
which will yield (7). From (7), we can calculate the Jacobian
∇siF = ∂ f (0,ui,0)

∂ s

Ŝi =


∆Xi
∆Yi
∆Zi
∆α i
∆β i
∆γ i


encoder

=



−risin
(

Ri−Li
wb

)
ri

(
cos
(

Ri−Li
wb

)
−1
)

0
0
0

Ri−Li
wb


(7)

In the case when ∆γi = 0, which means that the wheelchair
has translation with no rotation, ∆Xi =

(Ri+Li)
2 ,∆Yi = ∆γi = 0.

Then the update stage is: Ki = P̂iH
(
HP̂iHT +Vi

)−1

Si = Ŝi +Ki(yi−h(ŝi))
Pi = (In×n−KiH) P̂i

(8)

where Ki is the Kalman gain at instance i,H(.) is the
Jacobian matrix that linearizes the measurement model h(.),
yi = [∆Xi ∆Yi ∆Zi ∆αi ∆βi ∆γi]

T
ICP and Vi is the covariance

matrix of the measurement noise vi. The error covariance
matrices were determined by calculating the error between
the ground truth and the estimated wheelchair pose in both
the encoder-based and visual odometry cases as will be
explained in section V-B.

IV. WHEELCHAIR MOTION CONTROL SCHEMES
The main aim of this work is to design and implement

a control motion scheme for the power wheelchair that has
high uncertainty. This is a step towards making the WMRA
system capable of performing high precision tasks such as
”Go and Pick up” and ”Open the door”. The existing motion
control depends solely on wheel encoders which makes the
system unreliable. However, encoder-based odometry has a
higher frequency rate than the ICP-based odometry. That is
because the latter uses a computer vision algorithm which
needs more computational power. Therefore, the idea is

𝑻𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒘𝒊
𝒘𝒊−𝟏  

Fig. 4: Schematic diagram of the wheelchair encoder-based odometry
motion control .

using the encoder-based odometry to control the wheelchair,
and then update it once the ICP-based odometry output is
available. The update rate should be fast enough to guarantee
the accuracy of position estimation. The following two types
of motion control are used:

A. Encoder only motion control

The wheelchair pose is estimated according to the encoder-
based odometry method explained in section III-A. Then the
wheelchair pose is compared with the motion reference input
to calculate the motion error. Based on the error, a signal for
rotation and/or translation is sent to the wheelchair controller
to minimize this error. Fig.4 shows a schematic diagram of
this controller.

B. ICP-based updated odometry motion control

In this motion control, the two methods of wheelchair
pose estimation are running at the same time. Because
the encoder-based odometry is faster than the ICP-based
odometry, it is used to control the wheelchair similar to
previous control scheme. The difference is using the ICP-
based odometry to correct the encoder-based odometry ( red
updating link in Fig. 5) . As shown in Fig. 5, the EKF is
used to fuse the local transformation matrices computed by
the ICP algorithm and encoders to obtain the optimized pose
estimation. Then the encoder-based odometry is updated with
the ICP-based odometry. The resultant pose estimation is
called ICP-based updated odometry.

V. EXPERIMENTS AND DISCUSSION

In this work, the experiments were performed in two
stages: offline data processing, and online wheelchair ap-
plication. In both stages, the wheelchair ground truth was
captured using a state-of-the-art VICON R©(Oxford, UK) sys-
tem with eight motion capture cameras. The cameras use
infrared lights to detect passive reflective markers attached
to the WMRA system and the Kinect.The markers’ locations
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Fig. 5: Schematic diagram of the wheelchair ICP-based updated odometry
motion control.
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were captured at a frequency of 120 Hz. A Matlab R© program
was used for post motion data processing to compute the
wheelchair and Kinect frame poses. An accurate transfor-
mation matrix of the Kinect coordinate frame with respect
to the wheelchair coordinate frame is determined from that
data.

A. Offline data processing

The purposes of this stage are: to refine the ICP parameters
and to determine the covariance matrices of the Kalman
filter. In this stage, the wheelchair was commanded to move
in a square motion for five loops. It was controlled using
the encoder only motion control scheme (section IV-A).
Kinect point clouds associated with the encoders reading
and time stamp were stored using an onboard laptop. At
the same time, the ground truth of the wheelchair was
captured. The synchronization process between the ground
truth wheelchair pose and ICP-based updated wheelchair
pose is accomplish by using time stamp saved in both
programs. The open source Point Cloud Library (PCL) [27]
was used to process the Kinect point clouds and to implement
the ICP algorithm. For the Kalman filter covariance matrices,
four covariance matrices were estimated according to the
case of the wheelchair motion (translation or rotation): one
translation error and one rotation error covariance matrices
for encoder-based odometry and one translation error and
one rotation error covariance matrices for ICP algorithm.

B. Offline data processing results and discussion

To obtain the covariance matrices of the EKF, the encoder-
based odometry and ICP-based odometry were calculated for
the five loops. By calculating the error in the local transfor-
mation matrix estimated by these methods, we were able
to determine the covariance matrices of the encoder-based
odometry and the ICP algorithm. This was accomplished by
calculating the error in the local transformation matrix esti-
mated by the encoder-based odometry and the ground truth.
A similar calculation was performed for the ICP registration
process. As stated before, the offline data processing is for
evaluating the performance of our approach in terms of error
detection and correction. Fig.6(a) shows the wheelchair pose
estimated by the encoder-based odometry (blue-dashed line)
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Fig. 6: Encoder-based and ICP-based updated odometry( blue lines) for
online implementation with wheelchair ground truth (red line).

with the corresponding wheelchair ground truth motion (red-
dashed line). Only one square loop is shown for the clarity of
the figure. Fig.6(a) demonstrates the high angle drift between
the wheelchair pose that was estimated by the encoder-
based odometry and the ground truth. The localization error
was mainly due to high orientation error which made the
position error accumulate faster as the wheelchair moved.
This justifies the assumption we made earlier about this
mobile platform high uncertainty. It is worth mentioning that
we did not calibrate the encoders and the odometry equations
with any odometry calibration procedure, such as UMBmark
[28]. This is because we need to determine how effective our
approach is in detecting and compensating the localization
error in the case of platforms with high inaccuracies.

For the online implementation, the rate of updating
the encoder-based odometry with the ICP-based odometry
should be fast enough to guarantee the Kinects scenes
have sufficient overlap, which is crucial for a successful
registration process. As a result, the wheelchair pose error is
corrected regularly. We achieved this by relaxing the ICP’s
parameters, which made the online results differ from the
offline results. Fig.6(b) shows online implementation results
with the wheelchair ground truth of the proposed algorithm
for one square motion. The figure demonstrates 4 times
improvement in wheelchair pose estimation. It shows that
the wheelchair ground truth and estimated wheelchair pose
are almost identical in orientation angle with some position
error at the end of the loop.

For a complete comparison, Fig.7 shows the global posi-
tion and orientation error for the encoder-based and ICP-
based updated odometry in online implementation. These
errors are the difference between the wheelchair pose es-
timation using the these methods and the ground truth for a
one square loop. The encoder-based odometry (blue line)
has larger error in both cases (position and orientation)
compared with the other method. After the wheelchair moved
approximately 8 meters, the encoder-based odometry has
almost 0.8m position error, which is 10% of the traveled
distance, while ICP-based updated odometry, the position
error was 0.2m which is 2.5% of the traveled distance. This
is an improvement of 4 times. More improvement can be
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achieved by using high computational power. The offline data
processing results showed an improvement of about 15 times.

The same outcome is observed with the orientation angle;
after the wheelchair rotated for approximately 360 degrees,
the encoder-based odometry had almost 27 degrees of error,
which is 7.5% of the rotated angle, while the ICP-based
updated odometry had around 7 degrees which is around
2% of the rotated angle. This is an improvement of about
4 times. The offline data process results showed that the
encoder-based odometry can be improved by using ICP-
based updated odometry for about 13 times. Even though
the online application improvement is less than the offline
data processing, we could improve that by using more
computational power such as using GPU which is considered
as a future work.

Although, the Kinect cannot operate in outdoor environ-
ment, this technique can be applied in outdoors by using
other sensors that suit these environments, such as 3D laser
scanner. The important issue here is that the registration
process needs 3D static features within the depth range of
the sensor to get good alignment results. Therefore, this
technique is not applicable in outdoor or indoor environ-
ments that lack these features. Using probabilistic model to
fuse the measurements can cope with some failures of the
alignment process. In the worst case scenario in which the
registration always fails, the wheelchair localization will be
solely dependent on the wheel encoders.

C. Online wheelchair application

This experiment stage was designed to test and evaluate
the proposed motion control scheme. Obstacle avoidance was
chosen to be the online application. This application involves
many crucial tasks which need faster, more accurate motion
control. These tasks are: detecting an obstacle, mapping the
environment, path planning, and path execution. Another
Microsoft Kinect camera was used to detect the obstacle and
create a 2D-map of the environment. The A-star algorithm
[29] combined with a path smoother algorithm was used for
path planning [30]. At the beginning of this experiment, the
wheelchair was at a zero-orientation angle relative to the
global coordinate frame, and the obstacle was at an angle of
around +135 degrees relative to the global coordinate frame
as illustrated in Fig.8. The wheelchair was commanded to
move from a point (0, 0) to a point (-2.5, 2.5) with respect
to the global coordinate frame. Therefore, the wheelchair had

Initial wheelchair 
pose 

Final wheelchair pose 

An obstacle 

Fig. 8: Initial and final wheelchair poses and path planning.

to rotate 135 degrees first, and then the wheelchair faced the
obstacle. Once the wheelchair detected the obstacle, the path
planning process started. The wheelchair stopped moving
and the Kalman and the ICP Algorithms were paused until
the waypoints of the path were determined. The wheelchair
environment was then mapped by the second Microsoft
Kinect camera. The environment’s 2D map was uploaded
to the planning algorithm. The output of the path planning
algorithm was the waypoints of the wheelchair trajectory.
The wheelchair was then commanded to move from one
waypoint to the other in two consecutive movements which
are rotation and translation until it reached the final waypoint.

D. Online application results and discussion

The wheelchair and the obstacle ground truth were cap-
tured using the motion capture system. The obstacle was
also mapped using the second Microsoft Kinect camera(black
line). Fig.9(a) and Fig.9(b) show the results of the encoder
only and ICP-based updated motion control schemes re-
spectively with the ground truth of the wheelchair and the
obstacle. In Fig. 9(a), the Kinect-obstacle coordinates did
not match the obstacle ground truth. This was due to the
encoder-based odometry orientation error.

This introduced obstacle localization error which increased
the possibility of collision with the obstacle. In addition, the
wheelchair pose estimated by the encoder based odometry
had a considerable deviation from the wheelchair ground
truth at the end of the path execution, due to the starting
orientation angle error. However, in case of ICP-based up-
dated odometry motion control scheme (refer to Fig.9(b)),
the obstacle mapping was more accurate compare to the
former method. This was due to the pose error correction
of the ICP-based updated odometry motion control. It was
also observed that the wheelchair ground truth had a near
perfect match with the ICP-based updated odometry.

VI. CONCLUSION

Two methods were used to estimate the wheelchair pose
using two inexpensive sensors, which were wheel encoders
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Fig. 9: Wheelchair pose estimation(blue line) with the ground truth(red-
dashed line for the wheelchair and red-solid line for the obstacle), Kinect-
mapped obstacle(black line) and commanded trajectory (green line) for both
control schemes.
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and Microsoft Kinect sensor. Two wheelchair motion control
schemes were designed and implemented based on two meth-
ods. These methods were encoder-based odometry and ICP-
based updated odometry. Encoder-based odometry suffers
from error accumulation. The ICP-based odometry can detect
the orientation angle with a good accuracy, but it suffers
from lacking a mechanism to cutoff the error propagation
from inaccurate pose estimation. Kalman filter provides a
mechanism to optimize any imprecise measurement from the
ICP algorithm. This gives a smooth wheelchair pose estima-
tion compared to the ICP algorithm. EKF was used to fuse
the transformation matrices obtained from the two sensors
measurements. Two stages of experiments were performed:
offline data processing and online wheelchair application.
In the stage of offline data processing, Kinect point clouds
associated with the encoders reading were stored for five
square loops. ICP algorithm parameters were refined and the
covariance matrices for EKF were determined. There was a
significant improvement of 15 times in position estimation
and 13 times in orientation angle estimation compared to
encoder-based odometry when it was corrected with ICP-
based odometry. In the second stage, the proposed motion
controls were tested and evaluated using online wheelchair
application which was obstacle avoidance. Using ICP-based
updated odometry, the wheelchair was able to correctly
map and avoid the obstacle. There was an improvement of
4 times in both position and orientation angle estimation.
Despite the fact that online implementation needs more
computational power to obtain the same result as the offline
implementation; the online application proved that the ICP-
based updated odometry motion control scheme gives good
results in filtering out the systematic and nonsystematic error
of the encoder-based odometry.
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