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Abstract— Percutaneous surgical procedures depend on the
precise positioning of the needle tip for effectiveness. Although,
robustly locating the tip of the needle still represents a chal-
lenge, specially when flexible needles are used. An imaging
technique widely used for this task is 2D ultrasound, however
the low signal/noise ratio makes it difficult to apply conventional
image processing techniques. In this work, we propose an
alternative method for detecting the needle in an ultrasound
image and tracking it during a complete insertion. The pro-
posed method combines a Multilayer Perceptron network with
a Kalman filter estimator for improving robustness. In prelim-
inary experimental characterization, we acquired ultrasound
images for creating the data set and evaluated the performance
of the tracker with a complete insertion video. However the
tracking performance is still far from optimal, the obtained
results suggests the neural network approach to be a feasible
alternative to this problem.

I. INTRODUCTION

A kind of surgery comprising a substantial fraction of
minimally invasive procedures, being used in several medical
situations such as anesthesia, biopsy, brachytherapy and
neurosurgery [1], are the percutaneous surgical procedures,
in which internal organs are accessed by inserting a needle
through the patient’s skin, avoiding the need of making large
incisions. In all of these procedures, the accurate positioning
of the needle tip is vital as a position error might spoil the
treatment and even cause serious complications to the patient
[2]. This situation becomes critical as the target position is
located at hard access areas, where there are obstacles in the
path of the needle, like blood vessels or nerves.

To solve this problem, flexible needles with tip shaped
asymmetrically [3] have been proposed. This kind of needles
are able to curve inside the patient’s body, allowing the
reaching of targets at locations only accessible by a curved-
line trajectory. Thence, many works [4], [5], [6], [7] have
employed flexible needles in the last decade. Though, since
the needle doesn’t behave as a rigid body, the use of this
technique represents serious problems when it comes to
accurately locating the needle tip, during the insertion. This
makes the use of a medical imaging system unavoidable.

We can see that other works have made use of 2D [8], [9]
and 3D [10] ultrasound images for tracking the needle tip
position in these procedures. Among the main advantages of
ultrasound imaging are its safety, low cost, non-invasiveness
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and its high time resolution, which allows its use for real-
time applications. On the other hand, finding small objects in
ultrasound images is typically hard using this kind of system,
because the images contain a lot of speckle, resulting in
low signal-to-noise ratio. For that reason, it is not always
effective to apply traditional image processing techniques,
such as edge detection or texture based algorithms.

An alternative method for identifying the flexible needle in
the ultrasound images is to make use of pattern recognition
tools such as neural networks. This kind of method is known
for being capable of classifying complex structures, after
training is performed over a large enough data set. Some
examples of the application of these techniques comprise
segmentation of an equine leg [11] and breast tumor de-
tection [12] in ultrasound images. It is important to notice,
however, that neural network based methods tend to lack
in robustness, since the occurrence of false positives is
common.

In order to improve the overall performance of the needle
tracking task is to incorporate an stochastic filter, such as the
well known Kalman filter, in order to decrease the impact of
bad measurements. This technique uses a linear model of the
system for predicting the needle movement and incorporate
the measurements as corrections, taking into account the
relative variance between prediction and sensing. The output
of the filter is the best estimation of the needle position with
an associated uncertainty factor.

A. Contributions and organization of the paper

In this work we propose an alternative method for tracking
flexible needles in ultrasound images using a MLP as the
main sensor element and a Kalman filter for improving
robustness. The main goal of this work is to evaluate if the
MLP-based approach is feasible for this kind of application
and to compare it with the current state of art.

The rest of the paper is organized as follows. In section
II we described the proposed method in details. In section
III the experimental setup is described and the preliminary
results are presented. A series of discussions are made in
section IV and finally section V presents our conclusions
and expectations of future work.

II. TRACKING ALGORITHM

The problem of finding a flexible needle in ultrasound
images is still considered to be a challenging one, as the
needle is usually very thin (typical diameter in the order of
hundreds of microns) and the ultrasound images are often

2014 5th IEEE RAS & EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob)
August 12-15, 2014. São Paulo, Brazil

978-1-4799-3127-9/6/14/$31.00 ©2014 IEEE 70



noisy and contain a lot of speckle. However, tracking the
needle tip, given its initial position, is much simpler, as it
allows restricting the search region to a much smaller area.
This difference becomes decisive, when a neural network
approach is used, since this type of methods are usually
powerful in solving pattern recognition tasks, but requires too
much computational power for processing high dimensional
inputs.

In the case of percutaneous procedures, the needle entry
point is usually known beforehand, which permits adopting a
local tracking approach, ignoring the problem of localizing
the needle at an arbitrary location. This strategy, however,
requires an iterative process of detecting the needle inside a
region of interest (ROI) and moving the ROI accordingly, in
order to keep the needle in range.

A. Method overview

The Figure 1 shows a top level representation of the
tracking algorithm. As it can be seen, the main sensor
element is the Multilayer Perceptron (MLP) network, which
classifies the pixels of the ultrasound image in needle or
background. The input to the MLP is provided by a ROI
selector module, that extracts the pixels in a region close to
the estimated needle tip location.

After the region classification finishes, the output of the
MLP is a matrix indicating the likelihood of each pixel
of the ROI belonging to the needle. These likelihood map
is processed by a Tip Finder block, which measures the
location of the needle tip and also evaluates the associated
performance for this measurement, based in geometrical
characteristics of the MLP output. Finally, the measured tip
position is used to update the estimated tip position through
a Kalman filter. This updated estimation is used to select the
ROI in the next ultrasound frame.

MLP

Kalman
Filter

ROI
Selector

Tip
Finder

Ni NoFrame

xt, Pt pM , φ

Fig. 1: Top level representation of the needle tracking system

B. ROI selection

The first step in a loop of the tracking algorithm is to
select the ROI, from which the MLP input data will be
extracted. This is done by receiving one frame from the
ultrasound sequence and the current state estimation xt,
provided by the Kalman filter. In order to consider both
static and dynamic information regarding the needle position,
the last four frames are stored in a circular buffer. At every
iteration a square window of width W is cropped from each
of the four frames. All crop windows are centered at the

current needle estimated position p = (px, py). Next, the crop
windows are resized to ZxZ matrices and concatenated in a
single vector, producing an input block Ni of 4Z2 elements,
which is provided to the MLP. By adjusting the parameters
W and Z it is possible to adapt the width of the ROI, the
computational effort required and the information loss due
to image compression, given by the factor 1− Z/W .

Besides the estimated position, the ROI selector also
analyzes the associated uncertainty Pt. When the position
uncertainty is higher than a threshold τp, multiple instances
of Ni are generated, cropping the stored frames not only
at p, but also at the positions pij = (px + ik, py + jk),
where i, j ε {−2,−1, 0, 1, 2} and k is a scale factor, given
in pixels. All generated Ni vectors are provided to the
MLP, which increases the computational effort, making the
tracking algorithm slower. However, this allows the tracker
to expand its search region, until the position uncertainty
decreases.

C. Needle detection

When the neural network receives an input Ni, it generates
a ZxZ output matrix No, containing the likelihood of each
pixel of the ROI belonging to the needle. For training
this behavior it was necessary to manually produce these
likelihood maps for each image in the training data set,
generating target output images. In the produced targets,
pixels corresponding to the needle were set to 1, background
pixels were set to 0 and the pixels in the needle edges were
set to intermediate values, so that the trained network would
produce smoother output images.

The Figure 2 shows an example of the behavior of
a trained network. As it can be seen, the output of the
MLP contains a smooth transition between the needle and
the background. This is desirable, because it reduces the
occurrence of spurious false positive pixels, but requires
thresholding the network output, before searching for the
tip position. The threshold value is set as default, but it
is adjusted based on the histogram of the network output,
in order to ensure that the thresholded image will always
contain at least one white region.

In a previous work [13], we have implemented a similar
neural network, whose inner structure matches the one used
here. That work contains a much more detailed description
of the training process and the influence of the selection of
the training parameters in the network performance.

D. Needle tip finder and performance evaluator

After the network output No is thresholded, the resulting
binary image is analyzed in order to find the best estimation
for the needle tip location. To increase the spatial resolution,
the binary image is resized to an image of width W , even
if that distorts the borders of the detected needle. The tip
location process consists of segmenting the binary image
and finding the largest region, which is considered to be
the needle. Then, the center of mass and the region major
axis are obtained. The needle tip location pM is set as a

71



(a) ROI (b) Target detection mask

(c) Network output (d) Thresholded network output

Fig. 2: Needle detection performed by the MLP for a given
ROI.

point over the needle major axis close to the extremity of
the needle.

In addition to finding the needle tip location, the seg-
mented region is used to evaluate the performance of the
classification performed by the MLP. This is done by cal-
culating a series of geometrical coefficients that contain
information about the shape of the detected region. The
selected coefficients were:

ηA =
2Aneedle

Aneedle +Aother
− 1 (1)

ηC =
Aneedle
Aconvex

(2)

ηM = 1− m

M
(3)

ηθ = 1− ‖θ − θ
′‖

π
(4)

Aneedle

Aconvex

Aother

mM

θ

G

Fig. 3: Geometrical elements used for calculating the coeffi-
cients ηA, ηC , ηM and ηθ: the area of the needle (Aneedle), of
the smallest convex polygon containing the needle (Aconvex)
and of the other regions (Aother); the needle major (M ) and
minor (m ) axes; and the needle orientation (θ ).

The terms used for calculating these coefficients are graph-
ically represented in Figure 3. Each of these parameters range
from 0 to 1, where 1 corresponds to the ideal condition and
0 to the worst case scenario. The parameter ηA measures the
fraction of the classified pixels that belong to the largest
region. If the network output contains many regions, it
strongly indicates that there are false positives among the
detected pixels. Secondly, the parameter ηC measures the
convexity of the needle region, by dividing the area of the
needle region by the area of the smallest convex polygon
containing the needle region. The parameter ηM analyzes the
shape of the detected needle by computing how elongated the
needle region is, provided by the ratio between the region’s
minor and major axes. Finally, the parameter ηθ measures the
angular difference between the measured needle orientation
and the previous orientation of the needle, estimated by the
Kalman filter. Since the needle is a continuous body, this
difference should not be too large, even if the needle curves
inside the phantom.

Combining these four coefficients, we have created a
performance measurement φ, given by

φ = η2A.ηC .ηM .η
0.5
θ (5)

, which also ranges from 0 to 1. The exponents associated
to each coefficient where adjusted empirically, based on
the degree of relevance of each coefficient to the overall
performance measurement. The calculated φ is provided to
the Kalman filter alongside the measured tip location pM . In
the case when the position uncertainty is high, and multiple
Ni are provided to the MLP, the performance φ is used to
select the best measurement and discard all the other ones.

E. Kalman filtering

In order to add robustness to the tracker algorithm, a
first order Kalman filter was used to estimate the needle tip
position and velocity. The state vector then corresponds to:

xt = [ px py ṗx ṗy ]T (6)
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The measurements vector Zt is composed only by the two
position coordinates of the needle tip. Then the dynamic
model of the system can be described by

xt = Fxt−1 + wt (7)

zt = Hxt + vt (8)

where

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (9)

and

H =

[
1 0 0 0
0 1 0 0

]
(10)

and considering the white noises wt and vt given by

wt ∼ N(0, Q) (11)

vt ∼ N(0, R) (12)

Since only the needle position is measured and the tracker
does not actuate in the needle insertion system, the matrix H
does not have any velocity term and also there is no control
input matrix in the state update equation 7. The terms Q and
R are the covariance matrices associated to the prediction and
the measurement model, respectively. As the system is time
invariant, Q was set to a diagonal constant matrix Q = kpI ,
however R is changed at every iteration, to represent a sensor
with variable variance. The equation for R was defined as
R = σtI , with

σt = A+B(1− φ)λ (13)

The parameters A, B and λ need to be set in accordance
with kp to establish the correct relationship uncertainty
between prediction and measurement.

The equations for updating the state using the Kalman
filter can be given by:

x̂t = Fxt−1 (14)

P̂t = FPt−1F
T +Q (15)

Kt = P̂tH
T (HP̂tH

T +Rt)
−1 (16)

xt = x̂t +Kt(zt −Hx̂t) (17)

Pt = (I −KtH)P̂t (18)

Equations 14 and 15 correspond to the prediction step,
while equations 16 to 18 correspond to the correction step.
At every measurement performed by the MLP, the Kalman

filter is updated, by performing one prediction followed by
one correction step (Eq. 14 to 18). The updated state (xt)
and variance (Pt) are used to determine the ROI for the next
frame.

III. EXPERIMENTAL CHARACTERIZATION

In order to evaluate the proposed tracking system, exper-
iments with artificial phantom were conducted. The goal of
these experiments was to acquire a significant amount of
ultrasound images for generating the MLP training data set
and also for evaluating the complete tracking system after the
MLP was trained. The acquired images were divided in two
subsets, in order to ensure that the images used for testing
the tracker were not used for training the MLP.

A. Experimental Setup

For acquiring the ultrasound images, a Nitinol (55%Ni-
45%Ti metallic alloy) needle was manually inserted in a
phantom tissue block. The phantom consisted of a modified
recipe of ballistic gelatin, because its properties are similar to
the human sot tissue and it provides good visualization with
an ultrasound equipment. For increasing the heterogeneity of
the produced phantom and result in a more realistic scenario,
graphite powder and olives were added to the regular recipe
of ballistic gelatin (made from gelatin and glycerin). There-
fore the resulting images contained considerable speckle as
well as obstacles for the needle insertion.

The equipment used to acquire the images was the Sonix-
TOUCH from Ultrasound System Company, with a large
bandwidth curved array transducer C5-2. The ultrasound
probe was also operated manually, which means that the
image plane was subject to small variations, rather than being
strictly fixed. Since the whole insertion process was manual,
the insertion speed of the needle was variable and unknown.
This conditions diverge from the standard robot-assisted
needle insertion setup, where there are more variables under
control, being closer to the clinical case, where the physician
perform the complete insertion manually.

B. Data set generation and MLP training

From these experiments, 7 usable videos were acquired,
totalizing 1757 frames. Two of these videos (422 frames)
were separated for testing and the other five (1335 frames)
were used to train the MLP. In order to generate the data
set, the needle tip position was marked in each frame of
each video. After marking all frames, a set of input vector
was generated, extracting one input Ni from each sequence
of 4 consecutive frames.

The width of the ROI was 115 pixels and the width of
the resized image was 23 pixels. Therefore, the input vector
for the trained networks contained 2116 elements each. In
order to increase the training data set and to make the MLP
less orientation dependent, each set of 4 frames was rotated
in an angle θR ε {0◦, 90◦, 180◦, 270◦} . Also, for increasing
the variability of the training data set, a random offset was
added to the crop position for each Ni, ranging from -43

73



Fig. 4: Ground truth (green �) and estimated (blue ?)
trajectory of the needle on the test video 1

to 43 pixels in x and y directions. This produced a total of
5340 training examples.

After generating all the input vectors, the target output
images were generated, by marking the correct location of
the needle in each selected ROI. The target images represent
the likelihood of each pixel belonging to the needle, as
described in section II-C and illustrated in Figure 2. After
generating the training and test data sets, several networks
were trained in order to find the training parameters, which
resulted in the best performance. The best network, was a
4 layer MLP with 350 neurons in each hidden layer and
529 neurons in the output layer. Its performance in the test
data set, evaluated by the Mean Squared Error was 0.0550.
After thresholding, the average error was 0.0228, which
corresponds to an average of 12 pixels wrongly classified
in each 23x23 crop window.

C. Tracking Experiments

Once the MLP was trained, the described tracking algo-
rithm was applied to the two test videos. In order to better
evaluate the performance of the tracking system, the ground
truth was generated by manually marking the needle tip
position in each frame of the video.

The Figure 4 shows the ground truth and the estimated
needle trajectory for the first test video. As it can be seen,
the estimated trajectory diverged from the ground truth in
certain moments, but the algorithm managed to track the
needle until the end of the insertion. The estimation error,
for each iteration, is plotted in the Figure 5. From this graph,
it is possible to see that the final position estimation error
was of 5.68 mm. The maximum estimation error during the
complete insertion was of 14.92 mm

The Figure 6 presents the obtained trajectory for the
second video. In this case, the algorithm lost the needle in
the middle of the tracking process and did not manage to
find it accurately, until the end of the video. The Figure 7
shows the estimation error for this test. As presented, until
the frame 92, the error was below 4.1 mm, but after that the
tracking system got lost, resulting in a final estimation error
of 39.84 mm.

Fig. 5: Needle tip position error on the test video 1

Fig. 6: Ground truth (green �) and estimated (blue ?)
trajectory of the needle on the test video 2

IV. DISCUSSIONS

Even though the obtained results for the tracking tests
were not satisfactory, there are a series of discussions that
deserve to be addressed. Firstly, it is necessary to evaluate
the performance of the trained MLP. From a qualitatively
analysis, which is adequately represented by Figure 2, it is
possible to say that the results were truly satisfying. The
network managed to detect the correct needle orientation and
placement, even if the needle was not trivially distinguishable
in the provided ROI. It is possible to assume that this result
should be better than an untrained human subject. However,
from a quantitatively analysis, it is seen that the average
classification error of the MLP was of 12 pixels in 529,
which corresponds to 300 pixels in a 115x115 ROI. If all the
wrongly classified pixels were aligned in the same direction,
this error could represent up to 40 mm of position estimation

Fig. 7: Needle tip position error on the test video 2
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error in a single measurement.
Despite of that, in the first test video, the maximum

observed error was of 15 mm, as shows Figure 5. This
indicates that the Kalman filtering in combination with the
implemented performance evaluator is able to filter the worst
measurements, producing a more reasonable result. It can
also be seen from Figure 4 that the in two situations (frame
50 and frame 100), the estimated position largely deviated
from the ground truth, but was able to correct itself. This is
probably due to the implemented feature of increasing the
search area in proportion to the state uncertainty.

In the second video, shown in Figure 6, the tracker lost the
needle when encountering a large obstacle. This is obviously
bad, but it must be noted that none of the videos used for
training had a situation like that. This means that the poor
performance of the MLP is a consequence of the bad quality
and low variability of the acquired data. Even though, this
experiments were enough to perform preliminary evaluations
over the system, it becomes clear that it is necessary to
acquire more and better ultrasound images to improve the
performance of the MLP. One way to improve the quality
of the ultrasound images would be to apply an anti-speckle
or a band pass filter, in order to enhance the needle in the
images.

It is also important to note that the initial complexity of the
task was high. In the performed experiments, the insertion
velocity is unknown and it varies during the insertion. We
also assume that the initial velocity is unknown since we
only know the tissue entry point beforehand. Besides that,
the proposed tracking system is completely passive, which
means the algorithm can not actuate the ultrasound probe if
the needle leaves the image plane.

Having pointed all these difficulties, concerning the lack of
control inputs and the limited data for training, it is possible
to state that the obtained results were promising. Even if the
performed experiments were still very preliminary, they sug-
gest that if we had more data available or information about
the insertion speed, the proposed MLP tracking approach
could provide good results.

V. CONCLUSIONS

In this paper, we presented a neural network based flexible
needle tracker for ultrasound images. The conceived method
combines the classification power of the MLP, with stochastic
filtering for discarding poor measurements and increase
robustness. We have also collected images for generating a
training data set and evaluated our system with new data in
a complete needle tracking test. Even if the results are still
not satisfactory, the preliminary experiments here described
suggests this method could provide better results, if a larger
and more diverse data set was available.

In future works, we intend to produce a new data set,
increasing both the volume and the variability of our data.
We would also like to incorporate noise reduction filters in
our system in order to enhance the needle in the ultrasound
images. Finally, we intend to evaluate the possibility of
coupling the ultrasound probe to a robotic manipulator in

order to be able to actuate in the system and guarantee the
needle would always be in the image plane.
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