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Abstract— Emulating how humans coordinate articulated
limbs within the brain’s power budget promises to accelerate
progress in building autonomous biomimetic robots. Here,
we used a neuromorphic approach—low-power analog silicon
spiking neurons—to control an articulated robot in real-time.
We obtained a closed-form control function that computes
robot motor torques given the robot’s joint angles (state)
and desired end-effector forces; factorized the function into
a set of sub-functions over five unique three-dimensional
domains; and regressed each sub-function on to the steady-
state spiking responses of one out of five silicon spiking-neuron
pools. The spiking pools controlled a three degree-of-freedom
robot’s motor torques in real-time and performed reaches to
arbitrary locations in space with less than 2 cm root-mean-
square trajectory tracking error (of an analytical controller).
The controller is compliant and can draw shapes with a pen on
a dynamically perturbed surface while remaining stable. Using
force control resulted in linear responses to perturbations in
end-effector coordinates (task-space), which effectively filtered
noise due to neuron spikes. Factorizing the controller reduced
the neural regression’s complexity to cubic in the dynamic range
of the robot’s state and desired forces. Doing so made acquiring
spiking responses for regression tractable in time (~2–3 min),
and enabled reliable trajectory tracking with only 1280 neurons.
This is the first time a neuromorphic system has achieved real-
time manipulation for an articulated robot with three or more
degrees-of-freedom.

I. NEUROMORPHIC ROBOT CONTROL

Neuromorphic systems present a novel avenue for au-
tonomous robot control by providing programmable mega-
scale networks of biologically inspired spiking neurons that
operate in real-time while consuming a few watts [1]. Neuro-
morphics minimize power and operate in real-time by using
analog neurons, and can be programmed to compute arbitrary
mathematical functions by engineering neuron connection
weights [2]. Using analog neurons, however, requires accom-
modating stochastic noise, heterogeneity and millisecond-
scale time constants, which have stymied efforts to engi-
neer neuromorphic controllers for robotic manipulation. The
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Fig. 1. Robot Control with Neurogrid. A. Neurogrid, a million-neuron
neuromorphic system made up of sixteen Neurocores, controlled Neurobot,
a lightweight force-controlled desktop robot. B. Five 256 spiking-neuron
pools on a Neurocore implemented Neurobot’s end-effector force-control
function. A spike raster displays neural activity while Neurogrid controls
the end-effector in task-space.

present state-of-the-art is to control planar mobile robots [3],
[4] and arm models in simulation [5], [6], or to correct linear
torque errors for a two degree-of-freedom robot [7].

Previous attempts to use spiking neural networks for
control relied on model-free learning to determine connec-
tions weights [3], [4], [5]. The nonlinear multidimensional
nature of robot kinematics and dynamics, however, leads to
an exponential increase in search space and training time
with increasing degrees-of-freedom. Moreover, past research
simulated spiking neural networks on digital computers,
which imposes a prohibitive computational cost and limits
the number of neurons that can operate in real-time. The
primary challenge facing neuromorphic motor control today
is thus to demonstrate real-time manipulation by articulated
robots with three or more degrees-of-freedom.

In this paper, we present a framework for real-time robot
control using spiking silicon neurons (Fig. 1). Our approach
is to implement kinetic energy optimal task-space controllers
[8], [9] as dynamical systems; factorize these dynamical
systems into low-dimensional functions; and map these func-
tions on to pools of neurons using the Neural Engineering
Framework [10], [2]. We demonstrate our framework by
using a neuromorphic system, Neurogrid [11], to control
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Fig. 2. Spiking Neural Control Framework. The control function was
mapped on to Neurogrid by first decomposing it into a set of three-
dimensional sub-functions computed using five spiking neuron pools. Each
pool takes as its input a unique combination of three joint angles or
desired end-effector force components. The sub-functions—J0,0 × f∗0 , for
instance—are computed as a linearly weighted sum of the neurons’ spike
rates in each pool. These weighted spike rates are summed for the set of
sub-functions required to compute each component of Neurobot’s controlled
joint torques.

a three degree-of-freedom robot. The robot successfully
executes arbitrary motions in free space and manipulates a
pen in contact with a surface. Neurogrid is thus the first
neuromorphic hardware platform to successfully manipulate
an articulated robot while being exposed to arbitrary envi-
ronmental perturbations.

II. TASK-SPACE CONTROL

We chose to implement task-space force control using
the Operational Space Framework [8]. A user (or trajectory
generator) provides desired forces (f∗x ) in task-space. Task
forces are projected into joint torques (Γ) using a task
Jacobian (Jx) and a gravity-compensation torque is added
(Γg),

Γ = JT
x f

∗
x + Γg. (1)

The gravitational compensation, Γg , is given by

Γg = −
4∑

i=0

miJ
T
comi

g, (2)

where mi are the five articulated link masses, JT
comi

are the
link center-of-mass Jacobians, and g is the acceleration due
to gravity. Such force control is intrinsically compliant in
task-space, which helps it compensate for perturbations and
noise.

The operational space framework is attractive for neu-
romorphic controllers because it provides a closed-form,
time-invariant function that locally linearizes complex robot
dynamics and unifies motion and force control [8]. These
functions can be factorized into sub-functions on lower
dimensional sub-domains, simplifying the problem of finding
connection weights for the spiking neural network (Fig. 2).
In our case, the six-dimensional domain of joint angles and
commanded task-space forces was factorized into five three-
dimensional sub-domains. We used open-loop force control,
but force feedback may be easily accommodated in the future
since it involves additions and subtractions, which impose no
additional cost on computation.

III. TASK-SPACE CONTROL WITH SPIKING NEURONS

We mapped our task-space force controller on to Neuro-
grid using the Neural Engineering Framework [10], which
computes functions with pools of spiking neurons by re-
gressing function outputs on to steady-state neural responses
over the function’s domain. Each neuron in a pool samples
the domain by taking its inner product with an assigned
encoding vector within the domain (i.e., the neuron spikes at
a higher rate when the pool’s inputs align with its encoding
vector). Finally, a regularized linear regression over each
pool’s responses yields a weighted summation of steady-state
neuron responses that fits the desired control function—the
vector of summation coefficients is called a decoder.

Our mapping procedure involves three stages, factoriza-
tion, regression, and programming.

A. Factorization

While a single pool of neurons can compute arbitrary
nonlinear functions, the number of samples required to fit
the function grows exponentially with the dimensionality
of the function’s domain. We limited the sample space by
factorizing our control function into nonlinear sub-functions
over three of the domain’s six dimensions, which achieved
a cubic sample size.

To understand our strategy, consider that f = (x+ y) · z,
whose domain is R3, can be factorized into f0 = x · z and
f1 = y · z, whose domains are R2. Doing so reduces the
samples required from cubic to quadratic in the domain’s
dynamic range. Since addition is implicit while decoding
[2], the factorized sub-functions are readily combined to
reconstruct the original function.

We avoided factorizations that involve function composi-
tion, such as f0 = x + y and f1 = f0 · z, which require
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multiple neuron layers. Doing so introduces a delay because
neurons in the additional (f1) layers take additional time
to respond to new inputs. Note, however, that addition and
subtraction need not incur additional delay because these
operations can be realized by convergent inputs.

Using our factorization strategy, we found the simplest set
of nonlinear sub-functions that could be summed to yield our
desired control function. These sub-functions spanned the
smallest possible domains. The resulting network contains
five pools that each represent three variables drawn from
the robot joint angles and end-effector force components.
Two sub-functions were decoded from the spike rates of
neurons in each pool (see Fig. 2). The decoded sub-functions
were summed to obtain the three commanded torques (see
Appendix for more details).

B. Regression

We sampled the neural responses of Neurogrid’s five three-
dimensional pools over their respective input state spaces at
points on a 10× 10× 10 mesh (Fig. 3). We restricted joint
angles to ±30◦ and the commanded forces to ±5.5N, which
fully captures the robot’s operating range. The encoding
vectors were chosen using L1 basis-pursuit. Given a pool’s
response matrix, A, which contains the firing rates for each
neuron at each mesh point, we then performed regularized
linear regression to solve for the decoding weights, d, ac-
cording to

d = argmind ||Ad− y||2 + λ||d||2, (3)

where y is the desired function outputs (y exemplar estimated
in Fig. 3.B) and λ is a regularization parameter.

C. Programming

We programmed the decoding weights into Neurogrid’s
FPGA (Field Programmable Gate Array) daughter board,
which weights spikes from the five three-dimensional pools
to compute the commanded torques. To decode M sub-
functions from a pool of N neurons, the FPGA stores the
M × N decoding matrix, W , and multiplies this matrix
with the vector of instantaneous neural reponses using a
probabilistic approach [1], [12].

When neuron i spikes, the FPGA looks up the associated
row of the decoding matrix. For each wij in the row, the
FPGA generates a random number, rj (both numbers are 8-
bit fixed-point). If rj < wij , the FPGA produces an output
spike addressed to j. Thus, the rate of the spikes being sent
addressed to j should, in expectation, be equal to

∑
i aiwij ,

where ai is neuron i’s firing rate and wij is its decoding
weight for the jth sub-function.

The FPGA thus produces one stream of output spikes per
decoded sub-function, with rates proportional to each sub-
function’s values. The FPGA sends these streams back to
the computer. The computer exponentially filters the spike
streams to obtain estimates of the rates, which are sent to
the robot as commanded torques.

Fig. 3. Mapping Control Functions on to a Spiking Neuron Pool. A. Sub-
function to be mapped on to the pool of neurons. B. The target function
to be decoded from the pool’s activity (top). Neurogrid’s decoded function
approximates the target function (bottom). Decodes were obtained while
varying q0 and f∗0 with q2 = 0 (left), or q2 = π/8 (right). C. Responses of
neurons with the nine largest decode weights. Columns match B’s columns.

IV. CHARACTERIZING CONTROLLER PERFORMANCE

We characterized Neurogrid’s control performance using
a motor task that involved consecutive reaches to random
locations in three-dimensional space—the robot did not
return to the zero position between reaches. A single reach
lasted three seconds and involved a linearly interpolated end-
effector trajectory towards a goal position. The goal was
randomly drawn from a uniform distribution. The reaching
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task tested Neurogrid’s ability to smoothly recompute the
Jacobian—a complex nonlinear function—across arbitrary
trajectories that span the robot’s different configurations.

A. Reaching and Drawing with Neurogrid

Since our control framework accepts force commands,
we generated force trajectories for the reaching task by
implementing a proportional-derivative control law on the
computer:

f∗x = kTp (xdes(t)− xcurr)− kTv ẋcurr, (4)

where kp and kv are the proportional and derivative gains,
xdes is the desired end-effector position, and xcurr and ẋcurr
are the current end-effector position and velocity.

We required each reach to be followed by a three-second
hold at the goal position to test Neurogrid’s control stability.
Being able to maintain a stable position at arbitrary points in
space indicates a lack of spatial bias along with a baseline
torque noise level below the friction threshold.

We also used a planar drawing task to test Neurogrid’s
ability to operate in a plane subject to random user-induced
perturbations (see video demonstration). Remaining stable
while the user applied large (~5 cm) perturbations to the
drawing surface demonstrated the time-delays (millisecond-
scale) due to Neurogrid’s slow neurons do not destabilize
force control. Since we did not use direct force feedback in
our control loop, we reduced the vertical axis gains during
this task to increase compliance.

B. Increasing Performance with more Neurons

We tested how the Neurogrid controller’s performance
varied with the number of neurons. Our goal was to find
the least number of neurons required to achieve trajectory
tracking within a small percent error of an analytical task-
space controller implemented on the computer. To do so,
we exponentially increased the number of neurons in each
neuron pool (64, 128, and 256 neurons per pool) and com-
puted the root-mean-square trajectory errors (Fig. 4). With
256 neurons per pool, the Neurogrid controller tracked end-
effector trajectories with 5.6, 8.5, and 5.2% position error (x,
y, z), which were similar to the analytical controller’s 5.0,
3.4, and 4.8% errors.

The Neurogrid and the analytical controller’s performance
were limited by the lack of an inertial model. Without
an inertial model, the maximum control gains that do not
destabilize the robot are a nonlinear function of the robot’s
configuration. This forced us to use conservative values for
the controller’s proportional gains while keeping the system
marginally overdamped. The low conservative gains resulted
in residual tracking errors during reaches. While adding an
integral control term could compensate for such errors, we
avoided doing so in order to get a deterministic estimate
of Neurogrid’s performance compared to a time-invariant
controller.

The limits on control gains due to the lack of an inertial
model also diminished the Neurogrid controller’s ability to
overcome the Neurobot’s anisotropic friction. As such, the
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Fig. 4. Controller Performance. A. End-effector trajectory tracking
accuracy increased with neuron count. The analytical controller’s perfor-
mance is shown for comparison. Solid lines are executed end-effector
trajectories; dashed lines are desired trajectories. B. With 256 neurons/pool
(1280 neurons total), Neurogrid’s trajectory tracking root-mean-square error
(RMSE) approached the analytical controller’s. Medians and bootstrapped
95% confidence intervals are shown (grey highlights). C. Neurogrid’s torque
error, computed using the analytical controller’s torques as a reference, also
decreased with neuron count. The relatively larger torque errors were due
to high frequency spiking noise, which is low-pass filtered by the robot’s
physical dynamics.

controller produced constant offsets during the hold period
that followed each reach. Moreover, the effect of gravity at
Neurobot’s joints changes abruptly while moving the end-
effector across a gravity-balanced point on the x-axis. This
abruptly changes friction and leads to control errors during
the trajectory-tracking task.

V. CONCLUSION

We presented the first demonstration of a neuromorphic
hardware system controlling an articulated robot. Our sys-
tem, Neurogrid, controlled a three degree-of-freedom robot
(Neurobot) in free-space, and in contact with a surface that
was actively perturbed by a human. These results demon-
strate the feasibility of implementing nonlinear feedback
control on analog hardware. Our force controller only used
1280 out of Neurogrid’s million neurons, which suggests that
Neurogrid can potentially control eight hundred Neurobots
simultaneously in real-time—achieving 3.75 mW/robot. Neu-
rogrid is suitable for robot control in interactive environments
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TABLE I
MAPPING Γ TO NEURON POOLS

Pool Γ0 Γ1 Γ2

0 −0.35 sin(q0) cos(q2)f∗0 0 −0.35 cos(q0) sin(q2)f∗0

1 0.225 sin(q0) sin(q1)f∗0 −0.225 cos(q0) cos(q1)f∗0 0

2 −0.225 cos(q0) sin(q1)f∗1 −0.225 sin(q0) cos(q1)f∗1 0

3 0.35 cos(q0) cos(q2)f∗1 0 −0.35 sin(q0) sin(q2)f∗1

4 0 sin(q1)(0.225f∗2 − 1.026) cos(q1)(−0.35f∗2 − 1.612)

where trajectory-tracking position errors of ~1 cm are accept-
able.

Three fundamental challenges remain in order to gen-
eralize our spiking neural control framework to humanoid
robots. First, mapping algorithms that compute task-space
inertias in order to decouple task-control from the robot’s
nonlinear dynamics [9], which will improve control perfor-
mance. This involves computing a quadratic form over each
robot-link’s center-of-mass Jacobian (i.e., JT

comMcom Jcom),
which will double the complexity of individual control terms
(i.e., six-dimensional neuron pools instead of three). Second,
simultaneously controlling the force and torque that the
end-effector applies, which is necessary to maintain contact
with arbitrarily shaped surfaces. This involves computing
functions over the group of rotations because orientations
are not commutative (i.e., not a vector space like positions),
which further increases the controller’s complexity. And
third, simultaneously controlling multiple tasks, which is
necessary for humanoids (e.g., walking while holding a cup
of coffee). This involves projecting one task into the acceler-
ation null-space of the other [13], which involves computing
the Jacobian’s inertia-regularized generalized inverse. These
challenges set immediate goals for future neural robot control
research.

APPENDIX

Factorizing the Control Equation

The control equations given in (Eq. 1) are restated here

Γ = JT
x f

∗
x + Γg,

where
Jx =

[
Jx,0 Jx,1 Jx,2

]
with

Jx,0 =

sin(q0)(−0.35 cos(q2) + 0.225 sin(q1))
cos(q0)(0.35 cos(q2)− 0.225 sin(q1))

0



Jx,1 =

−0.225 cos(q0) cos(q1)
−0.225 cos(q1) sin(q0)

0.225 sin(q1)



Jx,2 =

−0.35 cos(q0) sin(q2)
−0.35 sin(q0) sin(q2)
−0.35 cos(q2)

 .

The gravity compensation term is given by

Γg = −
4∑

i=0

miJ
T
comi

g,

where
4∑

i=0

miJ
T
comi

g =

 0
1.026 sin(q1)
1.612 cos(q2)

 .
We see that the Γ is a function of 6 inputs—3 joint angles

q0, q1, and q2 and 3 forces f∗0 , f∗1 , and f∗2 . However, after
multiplying through, expanding, and breaking Γ into terms
being added or subtracted, each term is only a function of
3 or fewer inputs. There are 5 combinations of 3 inputs that
comprise the terms in Γ being added or subtracted together,
and we map these combinations to the groups of neurons on
Neurogrid (Table I).

Neurogrid

Neurogrid [1] contains 16 Neurocores, each with 65,536
neurons, for a total of over 1 million neurons. The Neu-
rocores are arranged in a tree. An asynchronous digital
router communicates spikes between Neurocores and to/from
the computer [14]. The computer connects to one of the
Neurogrid tree’s leaves through a programmable logic device
via USB. An encoder FPGA is situated at a different leaf.
A decoder FPGA facilitates weighted connections between
neurons, and is situated at the root of the tree.

Neurogrid’s neurons are implemented using subthreshold
analog circuits [15]. Several modes of operation allow for
different neuron models to be implemented. As neuron
implementation is as an analog circuit, there is no update
schedule for the neuron dynamics equations: the state vari-
ables are updated continuously according to the laws of
physics. We programmed Neurogrid to implement quadratic-
integrate-fire neurons with dynamics equation ẋ = x2/2 −
x + x0 + ge(erev,e − x) + gi(erev,i − x), where x is the
soma voltage, x0 is a bias current, and erev,e and erev,i are
the excitatory and inhibitory reversal potentials for our two
shared conductance-based synapses, which control ge and gi
[16].

Each pool outputs spike streams that are then decoded
by the decoding FPGA. To recover the rate of each stream,
which is associated with a commanded torque, these spike
streams must still be passed through a low-pass filter that
approximates the rate (the computer applies a decaying
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exponential filter). Since the spikes arrive as part of a USB
bulk transfer, the filtering software must maintain a buffer of
spikes deep enough so that it is never starved in the event
of a long interval between bulk transfer receipt. This would
cause the commanded torques to fall to zero for a short time,
making control difficult. In maintaining this buffer, we must
thus inject a worst-case USB latency into our control loop.

In addition to the decoding FPGA, a second encoding
FPGA generates a set of spike streams whose rates are
proportional to the robot’s state and commanded forces;
the computer sends packets that update these rates. In this
case, the FPGA stores a N ×M encoding matrix for each
pool, where M is now the dimensionality of the domain
of the function computed by the pool. We populate the
encoding matrix so that each row is a neuron’s encoding
vector. Thus, if x is the 3-vector of angle/force input values
to a pool, a neuron with encoding vector e receives a spike
rate proportional to eTx, which implements the preferred
directions of the neurons.

A future improvement will be to do the low-pass filtering
on the FPGA itself, so that recovering the commanded
torques from Neurogrid only injects the average-case USB
latency. A more complete set of improvements removes
the computer from the loop entirely, having the FPGA
communicate directly with Neurobot over EtherCAT. These
improvements will eliminate latencies due to Neurogrid-
computer communication.

Neurobot

Our experiments used Neurobot, a three degree-of-
freedom lightweight robot designed to draw shapes on a
plane using force control. The robot uses brushless EC60 flat
motors and 4096 counts-per-revolution quadrature encoders,
and is driven by a set of three Synapticon Somanet nodes.
The nodes receive torque commands and return joint angles
over Ethercat at a control rate of > 500Hz. Motor responses
are linear beyond control torques of 0.2Nm.
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