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Abstract. The present document provides supplemental material in re-
spect to the anonymous ECCV 2014 submission number 93. It outlines
the derivation of the block-matrix inversion of (ATA) in case the coef-
ficients emanate from the prime field Zp, and furthermore outlines the
detailed derivation of the Hessian of E which is needed in order to verify
second-order optimality.

1 Block-matrix inversion in Zp

We recall that—for our computations in Zp—the coefficients of the polynomi-
als should be derived in a geometrically consistent way, and not just chosen
randomly. As outlined in the paper, this requires to first chose a random pose
for the camera system and random world points in Zp, and then—among other
operations—chase those measurements through our block-matrix inversion in
order to obtain the corresponding coefficients of the final polynomials. A cru-
cial condition for the block-matrix inversion in the paper to work consists of
‖fi‖ = 1. In other words, we need to apply the square root in order to enforce
unit-norm of our bearing vectors. Computing the square root in Zp requires
special techniques. Our solution consists of deriving an alternative variant of
the block-matrix inversion that accepts an arbitrary norm for our measurement
vectors.

The original matrix we want to invert is given by
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We thus realized that (ATA) admits a block-structure. Using the Schur-
complement and block-matrix inversion, we obtain
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G H

]
, (4)

with
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We finally obtain
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and therefore
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Computing H, U, and V in this way allows us to use bearing vectors with
arbitrary norm. Using fTi fi = 1 and H = H, we finally get back to the result in
the paper.

2 Derivation of the Hessian of E

We start by reciting the expression for the first-order derivatives of E (i.e. the
Jacobian JE), which is needed for the first-order optimality conditions:

JE =

2s̃TM · ∂s̃
∂c1

2s̃TM · ∂s̃
∂c2

2s̃TM · ∂s̃
∂c3

 , (20)

where s̃ =
[
sT 1

]T
and ∂s̃

∂cj
=
[
∂sT

∂cj
0
]T

. We have used the fact that we already

compensated for a solution for our rotation, and are now operating in the Cayley-
space of rotations around that solution. s as a function of the Cayley-parameters

c =
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c1 c2 c3

]T
is given by
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∆
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2
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2
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where ∆ = 1 + c21 + c22 + c23. The Hessian of our energy term becomes
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where ∂2s̃
∂cj∂ck

=
[

∂2sT

∂cj∂ck
0
]T

.

The second-order optimality is now analyzed by evaluating HE around c = 0.

HE |c=0 is easily constructed by in turn evaluating s, ∂s
∂cj

, and ∂2s
∂cj∂ck

around

c = 0. The derivations are straightforward, and we only give the final result
here:

s|c=0 =
[
1 0 0 0 0 0 0 0 0 0

]T
∂s

∂c1
|c=0 =

[
0 0 0 0 1 0 0 0 0 0

]T
∂s

∂c2
|c=0 =

[
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]T
∂s

∂c3
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]T
∂2s
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]T
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[
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]T
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[
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∂2s
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[
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]T
∂2s
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[
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]T
∂2s
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[
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[
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]T
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[
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]T
Back-substitution into (22) leads to

HE |c=0 = 2

[
M5,5 + 2M1,2 − 2M1,1 + 2M2,11 − 2M1,11 . . .

M5,6 + M1,8 + M8,11 . . .

M5,7 + M1,9 + M9,11 . . .
(23)

. . . M5,6 + M1,8 + M8,11 M5,7 + M1,9 + M9,11

. . . M6,6 + 2M1,3 − 2M1,1 + 2M3,11 − 2M1,11 M6,7 + M1,10 + M10,11

. . . M6,7 + M1,10 + M10,11 M7,7 + 2M1,4 − 2M1,1 + 2M4,11 − 2M1,11

]
,

(24)

where we used the fact that M is a symmetric matrix, and Mi,j represents the
element in row i and column j of M. Second-order optimality is given if HE |c=0
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is positive-definite, which we verify by computing the sign of the Eigenvalues of
HE |c=0.

The root polishing step depends on the Jacobian JE around c = 0 as well,
which is why we also need to construct JE |c=0. Back-substituting the above
elements into (20) finally leads to

JE |c=0 = 2

M1,5 +M5,11

M1,6 +M6,11

M1,7 +M7,11

 . (25)

We can see that the computation of the Jacobian and the Hessian in Cay-
ley space becomes very compact once the matrix M is established around the
candidate rotation.


