
Supplemental Material for “SRA: Fast Removal of

General Multipath for ToF Sensors”

1 Proof of Theorem 1

Proof: x∗ solves the optimization

min
x≥0
‖x‖1 subject to (Φx− v)TC−1(Φx− v) ≤ ε2‖v‖2

Note that x∗s,∆ solves the same optimization, but with Fs,∆v replacing v and
Fs,∆Φ replacing Φ. In the above form of the minimization, the quantities
are all real; but Fs,∆ is complex. Rather than convert it to its real pieces,
we use the following argument.

Let z ∈ R2m be an abitrary real 2m-dimensional vector, and let z̄ ∈ Cm
be the complex version gotten from “unstacking” z:

z̄j = zj + izj+m

Then for a diagonal real matrix A ∈ R2m×2m satisfying Ajj = Aj+m,j+m,
we have that

zTAz =
2m∑
j=1

Ajjz
2
j =

m∑
j=1

Ajj(z
2
j + z2

j+m) =
m∑
j=1

Ajj |z̄j |2

Now, if we take A = C−1 and z = Φx− v, we have that the constraint

(Φx− v)TC−1(Φx− v) ≤ ε2‖v‖2

becomes
m∑
j=1

1

Cjj
|(Φx− v)j |2 ≤ ε2‖v‖2

which is in turn equivalent to

m∑
j=1

1

Cjj
|(Φ̄x− v̄)j |2 ≤ ε2

m∑
j=1

|v̄j |2

where Φ̄ is the “unstacked” version of the matrix Φ.
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Figure 1: Specular Multipath. See description in the text.

Now, we have that Fs,∆v̄ replaces v̄ and Fs,∆Φ̄ replaces Φ̄. Thus, the
constraint becomes

m∑
j=1

1

Cjj
|(Fs,∆Φ̄x− Fs,∆v̄)j |2 ≤ ε2

m∑
j=1

|Fs,∆v̄j |2

⇔
m∑
j=1

1

Cjj
|[Fs,∆(Φ̄x− v̄)]j |2 ≤ ε2

m∑
j=1

|Fs,∆v̄j |2

⇔
m∑
j=1

1

Cjj
|se−2πi∆/λj (Φ̄x− v̄)j |2 ≤ ε2

m∑
j=1

|se−2πi∆/λj v̄j |2

⇔
m∑
j=1

s2

Cjj
|(Φ̄x− v̄)j |2 ≤ ε2

m∑
j=1

s2|v̄j |2

⇔
m∑
j=1

1

Cjj
|(Φ̄x− v̄)j |2 ≤ ε2

m∑
j=1

|v̄j |2

which is exactly the original constraint.
Since only this constraint changes (the objective function remains the

same), the two optimization problems are identical, and our proof is com-
plete. �

2 Generation of Three Path Interference

Specular multipath with three or more paths results naturally from simple
scene geometries. In Figure 1, the object is lying on a Lambertian surface,
while the scene element is taken to be purely specular. The interfering path
is shown in red; note that the angle of incidence to the scene element equals
the angle of reflection, as is required for a specular surface. Indeed, for
any fixed position xs of the scene element, we can compute an appropriate
normal ns such that we generate multipath to given fixed object position xo
as follows: (1) orient ns so that it lies in the same plane as xs and xo−xs, and
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(2) place ns within that plane so as to bisect the angle between xo− xs and
−xs. We note that using a very similar analysis, one can fix the normal of
the scene element ns, and choose its position xs to generate an appropriate
interfering path.

Let us now analyze the amplitudes and distances of the two paths, direct
and interfering. First, let us introduce some useful notation (matching that
shown in Figure 1): let α = ‖xo‖ and u = xo/α. Then the direct path has
distance α. Its amplitude can be computed using the fact that the surface
is Lambertian: the returning ray’s power is proportional to the cosine of
the angle between the ray and the surface normal, which is just |u2|. The
analysis for the interfering path is similar. If we let β = ‖xs − xo‖, and
w = (xs − xo)/β, then the interfering path has distance given by (‖αu +
βw‖+ α+ β)/2, and its amplitude is given |w2|.

It is not hard to see that by varying the parameters α, β, u, and w,
we can generate any relative amplitudes we wish between the direct and
interfering paths, as well as any set of path distances. The above analysis
was for two path multipath, but three or more paths come naturally from
adding in more specular surfaces to the scene.
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