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1 Disintegration of Higher Order Energies

In this appendix, we will show how the higher order energy potentials can be
minimized using graph cuts. Since, graph cuts can efficiently minimize submod-
ular functions, we will transform our higher order energy function (Eq. 9) to a
submodular second order energy function. For the case of both αβ-swap and α-
expansion move making algorithms, we will explain this transformation and the
process of optimal moves computation1. All of the previously defined notations
are used in the same context and all of the newly introduced symbols are defined
in this section. The function that accounts for the number of disagreeing nodes
in a clique is defined as:

n`(yc) =
∑
i∈c

w`i1yi=`

The function 1yi=` is a zero-one indicator function that returns a unit value
when yi = `. We suppose here that weights are symmetric for all labels ` ∈ L
i.e., w`i = wi. Further, for our implementation we set wi = 1 ∀i ∈ c. This setting
satisfies the required constraints for these parameters, i.e.,

w`i ≥ 0 and
∑
i∈c

w`i = #c ∀` ∈ L.

We define a summation function that adds the weights for a subset s of c,

W (s) =
∑
i∈s

w`i = #s ∀` ∈ L.

1.1 Disintegration of Higher Order Energies to Second Order
Sub-Modular Energies for Swap Moves

Suppose, in a clique ‘c’, the locations of the active nodes is represented by a set
of indices ca. The nodes which remain inactive during the move making process

1 The development of this section is similar to [13]. We also used the same notation -
wherever possible - to allow the reader to easily sort out differences and commonal-
ities.
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are termed as passive nodes. Their locations are denoted by c̄a = {c \∀ci ∈ ca}.
The corresponding set of available moves to the swap move making algorithm
are encoded in the form of a vector tca . For the sake of simple demonstration, let
us focus on the two class labeling problem i.e., ` ∈ {0, 1}. The induced labeling
is the combination of the old labeling for the inactive nodes and the new labeling
for the active nodes i.e., ync = y◦c̄a ∪Tαβ(y◦ca , tca). If ync denotes the new labeling
induced by move tca and y◦c denotes the old labeling, we can define the energy
of move for an αβ swap as:

ψmc (tca) = ψc(ync ) = ψc(y◦c̄a ∪ Tαβ(y◦ca , tca))

= min
`∈L
{λmax − (λmax − λ`)exp(−W (c)−n`(y◦c̄a∪Tαβ(y◦ca ,tca ))

Q`
)}

= min
`∈L
{λmax − (λmax − λα)exp( −W (c)−nm0 (tca )

Qα
),

λmax − (λmax − λβ)exp( −W (c−ca)+nm0 (tca )
Qβ

)},

where, W (ca) = nm0 (tca) + nm1 (tca). The minimization operation in the above
equation can be replaced by defining a piecewise function:

ψmc (tca) =



λmax − (λmax − λα)exp( −W (c)−nm0 (tca )
Qα

)

if nm0 (tca) > %αβ(W (c)
Qα
− W (c−ca)

Qβ

− log(λmax−λαλmax−λβ )),

λmax − (λmax − λβ)exp( −W (c−ca)+nm0 (tca )
Qβ

)

if nm0 (tca) < %αβ(W (c)
Qα
− W (c−ca)

Qβ

− log(λmax−λαλmax−λβ )),

where, %αβ =
QαQβ
Qα+Qβ

. The function nm` (tca) is defined as:

nm` (tca) =
∑
i∈ca

wiδ`(ti).

From Theorem 1 in [1], the energy defined above can be transformed to the
submodular quadratic pseudo-boolean function with two binary meta variables.
In this form the αβ-swap algorithm can be used for minimizing the energy func-
tion.

1.2 Disintegration of Higher Order Energies to Second Order
Sub-Modular Energies for Expansion Moves

Suppose, in a clique ‘c’, the location of the nodes with label ` is represented by
a set of indices c`. The current labeling solution is denoted by y◦c.

If the dominant label is denoted by d ∈ L in the current labeling y◦c is,

s.t W (cd) > W (c)−Qd where d 6= α,
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there must be one dominant label:

Qa +Qb < W (c) ∀a 6= b ∈ L,

ψmc (tc) = ψc(Tα(y◦c , tc))

= min
`∈L
{λmax − (λmax − λα)exp(−

∑
i∈c

witi

Qα
),

λmax − (λmax − λd)exp(−
W (c)−

∑
i∈c

witi

Qd
)}.

The minimization operator in the above function can be replaced by a piecewise
function:

ψmc (tc, tcd) =



λmax − (λmax − λα)exp(−n
m
0 (tc)
Qα

)

if nm0 (tc) > %αd(
W (c)
Qα

− log(λmax−λαλmax−λd )),

λmax − (λmax − λd)exp(−W (c)−nm0 (tcd )

Qd
)

if nm0 (tc) < %αd(
W (c)
Qα

− log(λmax−λαλmax−λd )),

where, %αd = QαQd
Qα+Qd

and function nm` (tc) is defined as:

nm` (tc) =
∑
i∈c

wiδ`(ti).

From Theorem 2 in [1], the energy defined above can be transformed to the
submodular quadratic pseudo-boolean function with two binary meta variables.
In this form the α-expansion algorithm can be used for minimizing the energy
function.

2 Plane Detection Algorithm

Algorithm 1 shows our region growing algorithm for depth based segmentation.
Note that, point normals are found by local plane fitting and Singular Value
Decomposition (SVD). In step 2, ksm is the smoothing kernel and Nsm is the
smooth version of local normal image. In step 23, we also check if nr−idx already
been replaced by another region or not. If nr−idx is found to be previously
replaced, we use the updated value. In the following section, we list some example
results of our algorithm.

2.1 More Example Results
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Algorithm 1 Region Growing Algorithm for Depth Based Segmentation

Input: Point cloud = {P}, Depth map = {D}, RGB image = {I}, Edge matching
threshold eth, Normalized boundary matching threshold bth

Output: Labeled planar regions = {R}
1: Calculate point normals: {N} ← Fnormal(D)
2: Remove inconsistencies by low-pass filtering: {Nsm} ← N ∗ ksm
3: Cluster 3D points with similar normal orientations: {Nclu} ← Fk−means(Nsm)
4: Initialize: R← Nclu

5: Line segment detector: {L} ← FLSD(I)
6: Diffused line map: {Lsm} ← L ∗ k′sm
7: Identify planar regions with missing depth values: {M} ← Fholes(Nclu,D)
8: Find adjacency relationships for each cluster in Nclu: Aclu

9: Identify all unique neighbors of clusters in M: Unb

10: From Unb, separate correct and faulty clusters into Ncor and Ninc respectively
11: Initialize available cluster list: Lavl ← Ncor

12: Initialize label propagation list: Lprp ← ∅
13: while list Lavl is not empty do
14: Randomly draw a cluster from available Ncor: ridx
15: Identify ridx neighbors (Nr−idx) with faulty depth values using Aclu and M
16: for each neighbor nr−idx in Nr−idx do
17: Find mutual boundary (bm) of ridx and nr−idx

18: Calculate edge strength at bm using Lsm: estr
19: Calculate normalized boundary matching cost: bstr = bm/ Area of nr−idx

20: if estr < eth ∧ bstr > bth then

21: nr−idx
add−−→ Ncor, nr−idx

add−−→ Lavl

22: ridx
rem−−→ Lavl, nr−idx

rem−−→ Ninc

23: Update Lprp with ridx and nr−idx

24: ridx
rem−−→ Lavl

25: for any leftover clusters in Ninc do
26: Randomly draw a cluster from available Ninc: r

′
idx

27: Execute similar steps (from line 15 to 24) for r′idx

28: Update R according to Lprp

29: return {R}



Geometry Driven Semantic Labeling of Indoor Scenes 5

Fig. 1. Comparison of our algorithm (last row) with [2] (middle row) is shown. Note
that the maroon color in middle row shows non-planar regions (but not in the last
row where all regions are approximated by planes). The last row shows detected planes
averaged over super-pixels.
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