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1 Proof of Length Equivalence

Here, we prove Theorem 1 from Section 3, i.e., the equivalence between the length
of any given curve under the geodesic distance δg and the Stein metric δS up to scale
of 2
√
2. The proof of this theorem follows several steps. We start with the definition

of curve length and intrinsic metric. Without any assumption on differentiability, let
(M, d) be a metric space. A curve inM is a continuous function γ : [0, 1] →M and
joins the starting point γ(0) = x to the end point γ(1) = y.

Definition 1. The length of a curve γ is the supremum of l(γ; {ti}) over
all possible partitions {ti}, where 0 = t0 < t1 < · · · < tn−1 < tn = 1 and
l(γ; {ti}) =

∑
i d (γ(ti), γ(ti−1)).

Definition 2. The intrinsic metric δ̂(x, y) onM is defined as the infimum of the lengths
of all paths from x to y.

Theorem 1 ( [2]). If the intrinsic metrics induced by two metrics d1 and d2 are identical
up to a scale ξ, then the length of any given curve is the same under both metrics up to
ξ.

Theorem 2 ( [2]). If d1(x, y) and d2(x, y) are two metrics defined on a spaceM such
that

lim
d1(x,y)→0

d2(x, y)

d1(x, y)
= 1. (1)

uniformly (with respect to x and y), then their intrinsic metrics are identical.

Therefore, here, we need to study the behavior of

lim
δ2S(X,Y)→0

δ2g(X,Y)

δ2S(X,Y)

to prove our theorem on curve length equivalence.
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Proof. Let us first note that for an affine invariant metric δ on Sd++,

δ2(X,Y) = δ2(Id,D
−1/2LTYLD−1/2) , δ2(Id,M) ,

where X = LDLT and LLT = Id. Similarly, we can decompose M as M = L̃D̃L̃T ,
with L̃L̃T = L̃T L̃ = Id, which yields

δ2(X,Y) = δ2(Id, D̃) .

Since all our matrices are positive definite, D̃ is a diagonal matrix with strictly positive
values on its diagonal, and can be written as

D̃ , Diag(exp(tν)) ,

with ν ∈ Rd and t ∈ R. This definition can also be motivated by noting that the
tangent vectors at Id are symmetric matrices of the form L̃Diag(tν)L̃T . Applying the
exponential map yields points on the manifold of the form L̃Diag(exp(tν))L̃T . As
mentioned before, with an affine invariant metric, the dependency on L̃ and L̃T can be
dropped.

The previous discussion implies that we just need to study the behavior of the Stein
metric around Id using a diagonal matrix to draw any conclusion. We note that D̃→ Id
iff t→ 0. Therefore, given the definitions of δg and δS from Section 3 of the paper, we
have

lim
X→Y

δ2g(X,Y)

δ2S(X,Y)
= lim
t→0

δ2g

(
Id,Diag

(
exp(tν)

))
δ2S

(
Id,Diag

(
exp(tν)

))
= lim
t→0

∥∥∥ log (Diag
(
exp(tν)

))∥∥∥2
F

ln
∣∣∣ 12Diag

(
1 + exp(tν)

)∣∣∣− 1
2 ln

∣∣∣Diag
(
exp(tν)

)∣∣∣
= lim
t→0

t2
d∑
i=1

ν2i

d∑
i=1

ln
(
1 + exp(tνi)

)
− t

d∑
i=1

νi
2 − d ln(2)

(2)

= lim
t→0

2
d∑
i=1

ν2i

d∑
i=1

ν2
i exp(tνi)(

1+exp(tνi)
)2 = 8 , (3)

where L’Hôpital’s rule was used twice from (2) to (3) since the limit in (2) is indefinite.
Therefore,

lim
X→Y

δg(X,Y)

δS(X,Y)
= 2
√
2,

which concludes the proof.
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Fig. 1. Parallel transport of a tangent vector ∆ from a point W to another point V on the mani-
fold.

2 Conjugate Gradient on Grassmann Manifolds

In our formulation, we model the projection W as a point on a Grassmann mani-
fold G(m,n). The Grassmann manifold G(m,n) consists of the set of all linear m-
dimensional subspaces of Rn. In particular, this lets us handle constraints of the form
WTW = Im. Learning the projection then boils down to solving a non-linear opti-
mization problem on the Grassmann manifold. Here, we employ a conjugate gradient
(CG) method on the manifold, which requires some notions of differential geometry
reviewed below.

In differential geometry, the shortest path between two points on a manifold is a
curve called a geodesic. The tangent space at a point on a manifold is a vector space that
consists of the tangent vectors of all possible curves passing through this point. Unlike
flat spaces, on a manifold one cannot transport a tangent vector ∆ from one point to
another point by simple translation. To get a better intuition, take the case where the
manifold is a sphere, and consider two tangent spaces, one located at the pole and one
at a point on the equator. Obviously the tangent vectors at the pole do not belong to
the tangent space at the equator. Therefore, simple vector translation is not sufficient.
As illustrated in Fig. 1, transporting ∆ from W to V on the manifold M requires
subtracting the normal component ∆⊥ at V for the resulting vector to be a tangent
vector. Such a transfer of tangent vector is called parallel transport. Parallel transport
is required by the CG method to compute the new descent direction by combining the
gradient direction at the current and previous solutions.

On a Grassmann manifold, the above-mentioned operations have efficient numer-
ical forms and can thus be used to perform optimization on the manifold. CG on a
Grassmann manifold can be summarized by the following steps:

(i) Compute the gradient∇WL of the objective function L(W) on the manifold at the
current solution using

∇WL = DWL−WWTDWL . (4)

(ii) Determine the search direction H by parallel transporting the previous search di-
rection and combining it with ∇WL.

(iii) Perform a line search along the geodesic at W in the direction H. On the Grass-
mann manifold, the geodesics going from point X in direction∆ can be represented
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by the Geodesic Equation [1]

X(t) =
[
XV U

] [cos(Σt)
sin(Σt)

]
VT (5)

where t is the parameter indicating the location along the geodesic, and UΣVT is
the compact singular value decomposition of ∆.

These steps are repeated until convergence to a local minimum, or until a maximum
number of iterations is reached.

3 Additional Experiments

3.1 Parameter Sensitivity

In all our experiments, the parameters of our approach were set in a principled manner
(i.e., νw as the minimum number of samples in one class, and νb by cross-validation). In
this section, we nonetheless study the influence of the number of nearest neighbor from
different classes (νb) on the overall performance. To this end, we employed the UIUC
material dataset and report the accuracy of our NN-Stein-ML method when varying
this parameter and fixing the other to the value reported in Section 5 (νw = 6). Fig. 2
depicts the recognition accuracy for values of νb in the interval [1, 12]. Note that for
νb = 1, which is equivalent to mainly considering the intra-class discrimination, the
performance drops. For νb = 12, which makes the inter-class discrimination dominant,
the performance drops even further. The maximum performance of 58.6% is reached
for νb = 4, which again shows that balance between the intra-class and inter-class terms
is important. Note that our cross-validation procedure led to νb = 3, which is not the
optimal value on the test data, but still yields good accuracy.

3.2 Influence of the Number of Observations

Finally, as discussed in Section 4.3, we studied the sensitivity of our learning method to
the number of observations used to build the RCMs. To this end, we employed the UIUC
material dataset. For the training images, where computational cost is unimportant, we
generated RCMs using all possible observations (our setup provided us with 9600 ob-
servations per image). For the test RCMs, we reduced the number of observations on
an octave basis, i.e., downsampled the number of observations by a factor of two repet-
itively. Fig. 3 depicts the performance of CDL, as well as of NN classifiers with both
the Stein metric and the AIRM, with and without our learning scheme. The point where
the number of observations r matches the size of the RCM n (i.e., minimum number
of observations to have a valid SPD matrix) is marked by a vertical dashed line. On the
left side of this line, the number of observations is less than n. Therefore, for CDL, NN-
Stein and NN-AIRM, a small regularizer of the form εIn has to be added to the RCMs
to make them positive definite. Note that no such regularizer was necessary when using
our approach. From Fig. 3, we can see that all algorithms have a stable performance
when the number of observations is large enough. When reducing the number of ob-
servations below n, the performance of CDL, NN-Stein and NN-AIRM drops down by
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Fig. 2. Accuracy on the UIUC material dataset for varying values of νb.
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Fig. 3. Sensitivity of different algorithms to the number of observations used to create RCMs.

17%, 19% and 20%, respectively. In contrast, with our learning algorithm, the drop in
performance is less than 7%.
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