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1 Simple Tree Example

Here we present the derivation of the LP for a simple depth 2 tree below for
the problem of supervised learning. Consider the decision system shown in Fig.
1. The goal is to learn the decision functions g1, g2, and g3 that minimize the
empirical risk.
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Fig. 1: An example decision system of depth two: node g1(x1) selects either to
acquire sensor 2 for a cost c2 or 3 for a cost c3. Node g2(x1, x2) selects either to
stop and classify with sensors {1, 2} or to acquire 3 for c3 and then stop. Node
g3(x1, x3) selects to classify with {1, 3} or with {1, 2, 3}.

In reformulating the risk, it is useful to define the ”savings” for an exam-
ple. The savings, πik, for an example i, represents the difference between the
worst case outcome, Rmax and the risk Rk(fk,xi, yi) for terminating and classi-
fying at the kth leaf. The worst case risk is acquiring all sensors and incorrectly
classifying: Rmax = 1 + α

∑
m cm.

πik = Rmax −Rk(fk,xi, yi) = 1fk(xi)=yi + α
∑
m∈SC

k

cm (1)

Here, SCk is the complement set of sensors acquired along the path to leaf k (the
sensors not acquired on the path to leaf k). Note that the savings do not depend
on the decisions, g′js, that we are interested in learning.
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For our example, there are only 4 leaf nodes and the state of terminating in
a leaf is a encoded by a product of two indicators. For instance, to terminate
in Leaf 1, g1(xi) ≤ 0 and g2(xi) ≤ 0. This empirical risk can be formulated by
enumerating over the leaves and their associated risks:

R(g,xi, yi) = (2)(
Rmax − πi1

)
1g1(xi)≤01g2(xi)≤0

}
Leaf 1

+
(
Rmax − πi2

)
1g1(xi)≤01g2(xi)>0

}
Leaf 2

+
(
Rmax − πi3

)
1g1(xi)>01g3(xi)≤0

}
Leaf 3

+
(
Rmax − πi4

)
1g1(xi)>01g2(xi)>0

}
Leaf 4

Directly replacing every 1[z] with an upper bounding surrogate such as a hinge
loss, max[0, 1 + z] ≥ 1[z], produces a non-convex bilinear objective due the
indicator product terms. Bilinear optimization is computationally intractable to
solve globally.

Rather than directly substituting surrogates and solving the non-convex min-
imization problem, we reformulate the empirical risk with respect to the indica-
tors in the following theorem:

Theorem 11 The empirical risk in (2) is equal to (3).

R(g1, g2, g3,xi, yi) = Rmax − πi1 − πi2 − πi3 − πi4+

max
[
(πi3 + πi4)1g1(xi)≤0 + πi21g2(xi)≤0,

(πi3 + πi4)1g1(xi)≤0 + πi11g2(xi)>0,

(πi1 + πi2)1g1(xi)>0 + πi41g2(xi)≤0,

(πi1 + πi2)1g1(xi)>0 + πi31g3(xi)>0

]
(3)

Proof. Here, we provide a brief sketch of the proof. For full details please refer
to Section 2. We utilize the following two identities: 1[A]1[B] = min[1[A],1[B]]
and 1[A] = 1− 1[Ā] and express the risk in (2) in terms of maximizations:

R (g1, g2, g3,xi, yi) = Rmax − πi1 − πi2 − πi3 − πi4 (4)

+ πi1 max
(
1g1(xi)>0,1g2(xi)>0

)
+ πi2 max

(
1g1(xi)>0,1g2(xi)≤0

)
+ πi3 max

(
1g1(xi)≤0,1g3(xi)>0

)
+ πi4 max

(
1g1(xi)≤0,1g3(xi)≤0

)
Recall that the signs of g1, g2, g3 encode a unique path for xi. So let us consider
sign patterns for each path. For instance, to reach leaf 1, g1 ≤ 0 and g2 ≤ 0. In
this case, by inspection of (4), the risk is (πi3 + πi4)1[g1(xi)≤0] + πi21[g2(xi)≤0]+
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constants. This is exactly the first term in the maximization in (3). We can
perform such computation for each leaf (term in the max) in a similar fashion.
And due to the interdependencies in (4), the term corresponding to a valid path
encoding will be the maximizer in (3).

Risk Interpretability: Intuitively, in the reformulated empirical risk in
(3), each term in the maximization encodes a path to one of the K leaves. The
largest (active) term correspond to the path induced by the gj ’s for an example
xi. Additionally, the weights on the indicators in (3) represent the savings lost
if the argument of the indicator is active. For example, if the decision function
g1(xi) is negative, leaves 3 and 4 cannot be reached by xi, and therefore πi3 and
πi4, the savings associated with leaves 3 and 4, cannot be realized and are lost.

A distinct advantage of the reformulated risk in (3) arises when replacing
indicators with convex upper-bounding surrogates of the form φ(z) ≥ 1z≤0. In-
troducing such surrogates in the original risk in (2) produces a bilinear function
for which a global optimum cannot be efficiently found. In contrast, introduc-
ing convex surrogate functions in (3) produces a convex upper-bound for the
empirical risk.

2 Proof of Theorem 1

The product of indicators can be expressed as a minimization over the indicators,
allowing the empirical loss to be expressed:

R (g1, g21, g22, xi, yi) =

(
1 +

K∑
k=1

ck

− πi1 min
(
1g1(xi)≤0,1g21(xi)≤0

)
− πi2 min

(
1g1(xi)≤0,1g21(xi)>0

)
− πi3 min

(
1g1(xi)>0,1g22(xi)≤0

)
− πi4 min

(
1g1(xi)>0,1g22(xi)>0

))
.

By swapping the inequalities in the arguments of the indicator functions, the
minimization functions can be converted to maximization functions:

R (g1, g21, g22, xi, yi) =

(
1 +

K∑
k=1

ck

+ πi1 max
(
1g1(xi)>0,1g21(xi)>0

)
− πi1

+ πi2 max
(
1g1(xi)>0,1g21(xi)≤0

)
− πi2

+ πi3 max
(
1g1(xi)≤0,1g22(xi)>0

)
− πi3

+ πi4 max
(
1g1(xi)≤0,1g22(xi)≤0

)
− πi4

)
.
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Note that due to the dependence of the indicators, there will always be 3 max-
imization terms equal to 1 and 1 maximization term equal to zero. As a result,
the sum of maximizations can be expressed as a maximization over the 4 possible
combinations, yielding the expression:

R (g1, g21, g22, xi, yi) =(
1 +

K∑
k=1

ck − πi1 − πi2 − πi3 − πi4

max
(

(πi3 + πi4)1g1(xi)≤0 + πi21g21(xi)≤0,

(πi3 + πi4)1g1(xi)≤0 + πi11g21(xi)>0,

(πi1 + πi2)1g1(xi)>0 + πi41g21(xi)≤0,

(πi1 + πi2)1g1(xi)>0 + πi31g21(xi)>0

))
.

3 Proof of Lemma 31

The product of indicators over an arbitrary binary tree is given by:

R(g,xi, yi) =

K∑
k=1

risk of leaf k︷ ︸︸ ︷
Rk(fk,xi, yi)

K−1∏
j=1

[1gj(xi)>0]Pk,j [1gj(xi)≤0]Nk,j .︸ ︷︷ ︸
state of Gk(·) = xi in a tree

Converting the product into a minimization over indicators, the function can be
rewritten:

R(g,xi, yi) =

K∑
k=1

(
Rmax − πik

)
min

j∈{1,...,K−1}

(
[1gj(xi)>0]Pk,j , [1gj(xi)≤0]Nk,j

)
and using the identity 1A = 1− 1Ā, this can be converted to the maximization:

R(g,xi, yi) = Rmax −
K∑
k=1

πik+

K∑
k=1

πik max
j∈{1,...,K−1}

(
[1gj(xi)≤0]Pk,j , [1gj(xi)>0]Nk,j

)
.

As in the 2-region case, the dependence of the indicators always results in K−1
maximization terms equal to 1 and 1 maximization term equal to 0. By exam-
ination, the sum of maximization functions can be expressed as a single maxi-
mization over the paths of the leaves, resulting in a loss shown in (8).
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4 Additional Explanation of Prop. 32

The linear program of Prop. 4.1 is constructed by replacing the indicators with
hinge-losses of the appropriate signs:

min
g1,...,gK−1,γ

1,...,γN

α1
1,...,α

N
K−1,β

1
1 ,...,β

N
K−1

N∑
i=1

γi subject to: (5)

γi ≥ wi
p,k

 αi1
...

αiK−1

+ wi
n,k

 βi1
...

βiK−1

 , i ∈ [N ], k ∈ [K]

1 + gj(xi) ≤ αij , 1− gj(xi) ≤ βij , αij ≥ 0, βij ≥ 0,

j ∈ [K − 1], i ∈ [N ]

Note that the linear program arises based on the fact that any maximization
can be converted to a linear constraint with the introduction of a new variable.
The maximization in the objective for each observation is replaced the first
constraint, with the introduction of the variable γi. The maximization functions
in the hinge losses are replaced by the second line of constraints, introducing the
variables αij = max(1 + gj(xi), 0) and βij = max(1− gj(xi), 0).


	Supplementary Material: Model Selection by Linear Programming

