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1 Simple Tree Example

Here we present the derivation of the LP for a simple depth 2 tree below for
the problem of supervised learning. Consider the decision system shown in Fig.
The goal is to learn the decision functions ¢;, g2, and g3 that minimize the
empirical risk.
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Fig.1: An example decision system of depth two: node gi(x1) selects either to
acquire sensor 2 for a cost ¢q or 3 for a cost c3. Node go(x1, x2) selects either to
stop and classify with sensors {1, 2} or to acquire 3 for c3 and then stop. Node
g3(z1,x3) selects to classify with {1,3} or with {1, 2, 3}.

In reformulating the risk, it is useful to define the ”savings” for an exam-
ple. The savings, mi, for an example 4, represents the difference between the
worst case outcome, Ry,q. and the risk Ry (fk,X;,y;) for terminating and classi-
fying at the kth leaf. The worst case risk is acquiring all sensors and incorrectly
classifying: Rz =14+ a)_, Cm.

77]2 = Rmax - Rk(fk7xiayi) = ]lfk(xi):yi + o Z Cm (1)
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Here, Sg is the complement set of sensors acquired along the path to leaf k (the
sensors not acquired on the path to leaf k). Note that the savings do not depend
on the decisions, g;s, that we are interested in learning.
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For our example, there are only 4 leaf nodes and the state of terminating in
a leaf is a encoded by a product of two indicators. For instance, to terminate
in Leaf 1, g1(x;) < 0 and g2(x;) < 0. This empirical risk can be formulated by
enumerating over the leaves and their associated risks:

R(g7xi7y’i) = (2)
Leaf 1

Rmaw - 77%) ]191(X1)<0]192 (x4) >0} Leaf 2
) } Leaf 3

i
maz — T3 ]lgl(x1)>0]1g3 <0

+ o+ o+
/\/:?/_\/\

Rmaz — 71'2) ]lgl(xi)>0]]'g2(xi)>0} Leaf 4

Directly replacing every 1|, with an upper bounding surrogate such as a hinge
loss, max[0,1 4 2] > 1,;, produces a non-convex bilinear objective due the
indicator product terms. Bilinear optimization is computationally intractable to
solve globally.

Rather than directly substituting surrogates and solving the non-convex min-
imization problem, we reformulate the empirical risk with respect to the indica-
tors in the following theorem:

Theorem 11 The empirical risk in is equal to ,

R(91a927937Xiyyi) = Rma:p - 7T§_ - 773 - ﬂ-é - Trfl_i_

’/T’i + ’/T; ]]'gl(xi)>0 + 7T§193(x11)>0:| (3)

Proof. Here, we provide a brief sketch of the proof. For full details please refer
to Section 2 We utilize the following two identities: 141z = min[Lja), 1jp]
and Iy =1- IL[ Ky and express the risk in in terms of maximizations:
R(gth;g&Xivyi) :anw _7'(-;- _ﬂ-;_ﬂ-é_ﬂ-i (4)
+ ﬂ- max (]191(& >0, 1 92( x1)>0)
+ ﬂ-% ma‘X( g1(xi) >0, 1 g2( Xz)<0)
+ 75 max( g1(x:) <05 Lga xl)>0)

+ 7 max (L, (x;)<0s Lgg(xi)<0)

Recall that the signs of g1, g2, g3 encode a unique path for x;. So let us consider
sign patterns for each path. For instance, to reach leaf 1, g3 < 0 and go < 0. In
this case, by inspection of (), the risk is (7§ + 75) Ly, (x;)<0] + T L [gs (xi)<0]
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constants. This is exactly the first term in the maximization in . We can
perform such computation for each leaf (term in the max) in a similar fashion.
And due to the interdependencies in , the term corresponding to a valid path
encoding will be the maximizer in .

Risk Interpretability: Intuitively, in the reformulated empirical risk in
(13), each term in the maximization encodes a path to one of the K leaves. The
largest (active) term correspond to the path induced by the g,’s for an example
x;. Additionally, the weights on the indicators in represent the savings lost
if the argument of the indicator is active. For example, if the decision function
g1(x;) is negative, leaves 3 and 4 cannot be reached by x;, and therefore % and
74, the savings associated with leaves 3 and 4, cannot be realized and are lost.

A distinct advantage of the reformulated risk in arises when replacing
indicators with convex upper-bounding surrogates of the form ¢(z) > 1,<¢. In-
troducing such surrogates in the original risk in produces a bilinear function
for which a global optimum cannot be efficiently found. In contrast, introduc-
ing convex surrogate functions in produces a convex upper-bound for the
empirical risk.

2 Proof of Theorem 1

The product of indicators can be expressed as a minimization over the indicators,
allowing the empirical loss to be expressed:

3(917921,922,331‘7%) = <1+ch
_ﬂimin ]191(301')S07]1921(wi)§0
— 7% min

Z‘ .
—mgmin (Ly 2,50, Lgys(ai)<0

—~ ~—~~ —~
=

)
]191(wi)§07]1921(11)>0)
)
)

— 74 min

By swapping the inequalities in the arguments of the indicator functions, the
minimization functions can be converted to maximization functions:

R (91,921,922, i, Yi) = (1 + ch

i
+ 7 max ]191 (z4)>0> 921(1i)>0 -

+ 75 max

( )

+ 75 max (L9 (2)>05 Lgay (w:)<0) = T2
(]191 )<0> gzz(wz‘)>0)
( )

7
+7T4 max ]lgl (z;)<0> 922(zi)§0
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Note that due to the dependence of the indicators, there will always be 3 max-
imization terms equal to 1 and 1 maximization term equal to zero. As a result,
the sum of maximizations can be expressed as a maximization over the 4 possible
combinations, yielding the expression:

R (91,921, 922, Ti, yi) =
K
<1+chﬂ — Ty — Wy — Ty
k=1
max ((ﬂ-é + ﬂ-fl)]lgn(Ii)SO + ﬂgﬂgm(%)SO’
(W% + Wji)]lgl(xl)go + Wi]lgzl(wi)>0)

(Wli + 7T%)]lgl(a:q;)>0 + 7-‘-41-1]1921(90i)§0’

(7‘(’1 + ﬂ-%)ﬂgl(Ii)>0 + 7T§Il921(zi)>0)> .

3 Proof of Lemma 31
The product of indicators over an arbitrary binary tree is given by:

R(ga Xi, yz) =
K risk of leaf k K—1

Z Rio(fr- %45 yi) H []lgj (X¢)>0]Pk’j []lgj(xi)SO]Nk’j'
k=1

Jj=1

state of G (-) = x; in a tree

Converting the product into a minimization over indicators, the function can be
rewritten:

K
mazx : 1. . Pk,j7 1. < Ny, j
zjl Je{lﬁl,r}{—u ([ 95 ( >0l [ 95 ( <ol )

and using the identity 14 = 1 — 1 7, this can be converted to the maximization:

R(gaxivyz = maw Zﬂ-k"'

K
P N j
Z Je{l K71} (g, iy <o) g, iy >0] ™) -

As in the 2-region case, the dependence of the indicators always results in K — 1
maximization terms equal to 1 and 1 maximization term equal to 0. By exam-
ination, the sum of maximization functions can be expressed as a single maxi-
mization over the paths of the leaves, resulting in a loss shown in (8).
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4 Additional Explanation of Prop. 32

The linear program of Prop. 4.1 is constructed by replacing the indicators with
hinge-losses of the appropriate signs:

N
min Zw subject to: (5)
Gy gK =157 5oy i=1
a},.u,a%,p,@%»ww@gfl
ol B
V2w | | twar| 1 |Li€[N], ke [K]
0611(71 /8}{71

1+gi(xi) <af, 1—gj(x;) <B;, a} >0, 85 >0,
jE[K—l],iE[N]

Note that the linear program arises based on the fact that any maximization
can be converted to a linear constraint with the introduction of a new variable.
The maximization in the objective for each observation is replaced the first
constraint, with the introduction of the variable v¢. The maximization functions
in the hinge losses are replaced by the second line of constraints, introducing the
variables o = max(1 + g;(x;),0) and 8} = max(1 — g;(x;),0).
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