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This supplementary material further supports and illustrates some of the
points mentioned in our paper. It is organized as follows.

– Section 1 discusses possible biases for match selection. It first explains the
reason for putting the RANSAC stage as the last step of match selection and
not earlier. Second, it shows the impact of using different ranking functions
in match selection. In particular, it shows that the distance to the epipolar
line is not suitable.

– Section 2 displays statistics on the proportion of matches that are selected by
our algorithm. On our test dataset, it selects on average 61% of the matches
(MS), or 78% if match refinement is applied first (MR+MS).

– Section 3 provides some visual illustrations that the improvement of calibra-
tion accuracy with our algorithm leads to a reduction of the reconstruction
error of 3D points.

1 Bad alternative choices for match selection due to bias

1.1 Cleaning up matches with RANSAC before selection is biased

A preliminary step, before actual match selection, consists in eliminating likely
outliers (cf. paper, Section 3, “Cleaning up input matches”). It is crucial not to
introduce any bias at this stage.

As mentioned in the paper, there would be a bias if we were to filter the
matches using RANSAC and an estimated epipolar geometry. This is illustrated
on Figure 1 (“ORSA before MS”), on the 6 scenes of Strecha et al.’s dataset [3]:
an increase in both rotation and translation errors can be observed if match
selection (MS) is preceded by ORSA [2] to first clean up input matches.

1.2 Distance to the epipolar line is biased for ranking matches

Match selection relies on a ranking function φ to order the matches (cf. paper,
Section 3, “Ranking matches”). However, using geometrical information in func-
tion φ introduces a bias. In particular, it is not appropriate to use the distance to
the estimated epipolar line to rank the matches, e.g., to define φ(m) = eF (M,m).
This is illustrated on Figure 1 (“MS with φ = eF ”), also on the 6 scenes of Strecha
et al.’s dataset: results are not as good as with our unbiased ranking function.

This estimate can be slightly improved, although still with a bias. After
estimating a fundamental matrix FM ′ for a given subset of matchesM ′ ⊂M , and
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Fig. 1. Possible bias with inappropriate match selection. Left: rotation error eR on
Strecha et al.’s dataset. Right: translation error et. Lines are defined as follows:

-+×-: ordinary ORSA alone (an a-contrario variant of RANSAC),
-×-: MS preceded by ORSA to first clean up input matches,
-◦-: MS using distance to epipolar line as ranking function φ,
-+-: MS using iterated distance to epipolar line and rmin = 0.4,
-C-: our MS method.

Scenes are ordered by increasing rotation error for ORSA alone.

considering another subset of matches Msub⊂M , we can compute eF (M ′,Msub),
the root mean square error of the distance of matches inMsub to the FM ′ -epipolar
lines. The matches m∈M can then be ordered by increasing distance eF (M ′,m)
as a sequence (mi)1≤i≤|M | such that i< j ⇒ eF (M ′,mi)≤ eF (M ′,mj). Noting
M ′|n = {mi | 1 ≤ n} the first n matches in M ′ and setting a minimum number

of matches Nmin to retain, we can easily find the exact optimal subset M ′∗ ⊂M
with respect to FM ′ :

M ′∗ = arg min
Msub⊂M

Nmin≤|Msub|

eF (M ′,Msub)2

|Msub|

= arg min
Msub=M ′|n

Nmin≤n≤|M |

eF (M ′,Msub)2

|Msub|

= M ′|n∗ , with n∗ = arg min
Nmin≤n≤|M |

eF (M ′,M ′|n)2

n

A linear exploration of n in {Nmin, . . . , |M |} is enough to compute n∗, and then
M ′∗=M ′|n∗ . Starting with M ′0 =M , defining M ′k+1 =M ′∗k , and stopping when

M ′∗k =M ′k, we can iteratively get a good estimate for M∗sub⊂M defined as:

M∗sub = arg min
Msub⊂M

eF (Msub,Msub)2

|Msub|
(1)
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As shown of Figure 1 (“MS with iterative eF ”), results with this estimate for
minimum ratio of kept points rmin =Nmin/|M ′|= 40% are slightly better on aver-
age than with φ(m) = eF (M,m). However, experiments show that this algorithm
tends to lead to values of |M ′∗k | that are close to Nmin, which means it is not
well behaved.

2 Number of matches kept by match selection

Match selection (cf. paper, Section 3) removes matches when they are likely to
degrade accuracy. Experiments (cf. paper, Section 5) shows that the remaining
matches reduce the rotation and translation error with respect to actual ground
truth. It is interesting to look at the number or proportion of matches that are
discarded.

This is illustrated in Figure 2. Match selection alone (MS) keeps 61% of the
matches on average. But preceded by match refinement (MR), match selection
(MR+MS) keeps on average 78% of the matches, as they are more reliable. Note
that the number of used matches may slightly increase after match refinement
because some matches that were previously discarded by the final RANSAC
stage (to compute motion) are now considered as inliers. Note also that the
ratio of used matched N rarely goes down to 40%, which justifies our heuristic
for exploring only discrete fractions of Msub(N) starting from ratio r= 0.4 up
(cf. paper, Section 3, “Exploring subsets of matches”).

3 Accuracy of 3D reconstruction

We now illustrate the accuracy of our method regarding 3D reconstruction, i.e.,
structure. The problem is that a 3D ground truth is not available for the consid-
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Fig. 2. Left: number of matches selected to compute motion for image pairs in Strecha
et al.’s dataset. Right: proportion of selected matches. (The ratio can be greater than 1
with MR-based methods as match refinement can turn outliers that are near inliers
into actual inliers.) Image pairs are ordered by increasing number of matches for ORSA
alone.
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ered datasets. It is why we could not provide figures for the 3D error e3D in the
paper; we could only measure the rotation error eR and the translation error et
with respect to the ground truth (cf. paper, Tables 1 and 2).

To get round this problem, we construct a pseudo ground truth based on
exact rotation and translation, but approximate point matches: for each match
m = (x,x′), in images I, I ′ with ground-truth camera centers C,C ′, we construct
a 3D point Xx(x′) as the point on line Cx that is the closest to line C ′x′.

Note that we do not resort to ordinary triangulation here, e.g., mid-point of
lines Cx and C ′x′, gold-standard algorithm, etc. [1]. The reason is that a 3D
point X(x,x′) originating from ordinary triangulation provides a kind of middle
ground between views x and x′, where (x,x′) does not try to aim at a specific 3D
point. As a result, it does not make sense with respect to match refinement. The
fact is, as described in the paper (cf. Section 4), match refinement is asymmetric;
it only moves points in image I ′. It yields a new putative match (x,x′′) that tries
to better locate x in 3D, which is different from X(x,x′). On the contrary, if we
consider 3D points Xx(x′) as indicated above, match refinement make sense: we
then try to get closer to the 3D ground truth location of x both before or after
refinement.

A drawback, though, is that the error of the pseudo ground truth with respect
to the unknown actual ground truth might be doubled compared to the ordinary
triangulation case. We accept that and consider the measure as relative but
fair in the sense that we evaluate all SfM methods with the exactly same 3D
reconstruction principle.

Figures 3 and 4 show how our approach compares to RANSAC-only: recon-
structed 3D points are much closer to the pseudo ground truth with our method.
Note that points on the top left and top right parts of the views are not outliers;
they correspond to points on the roof. Figures 5 and 6 provide a similar example.

References

1. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press (2004)

2. Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between
two images and estimate the fundamental matrix. IJCV 57(3), 201–218 (2004)

3. Strecha, C., von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On bench-
marking camera calibration and multi-view stereo for high resolution imagery. In:
CVPR (2008)



Match selection and refinement for highly accurate two-view SfM 5

Fig. 3. An image pair in Strecha et al.’s dataset.
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Fig. 4. View from above of the 3D points reconstructed from the image pair in Figure 3.
The colors are as follows:

– black: pseudo ground truth,
– red: using ORSA alone,
– blue: using match selection (MS) before ORSA,
– green: our method, i.e., match refinement followed by match selection (MR+MS).
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Fig. 5. Another image pair in Strecha et al.’s dataset.
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Fig. 6. Front view of the 3D point cloud reconstructed from the image pair in Figure 5.
The colors are as follows:

– black: pseudo ground truth,
– red: using ORSA alone,
– blue: using match selection (MS) before ORSA,
– green: our method, i.e., match refinement followed by match selection (MR+MS).


