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In the scope of the supplementary material, we summarize the main aspects
of our material databases presented in the accompanying paper with some addi-
tional illustrations. First, we describe the acquisition process and the measured
material database. Subsequently, we discuss our second database which is synthe-
sized using the data from the measured database in combination with different
environments and virtual viewpoints.

Table 1. Databases referenced in the paper: Our databases are highlighted in red (∗: in
principle, an arbitrary number of configurations could be considered in the synthesis)
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materialmsamples 61 10 44 11 90 84 1,000 84

categories 61 10 11 11 8 7 10 7

samplesmpermcategory 1 1 4 1 N.N. vw 100 vw

illuminations 4 ... 55 3 4 4 150 v5v 100 ,*8

illuminationmtype controlled controlled controlled controlled controlled controlled natural natural

& ambient & ambient

viewpoints 7 27 27 27 1 v5v 100 4w8

imagesmpermsample 205 81 108 108 150 wwg8*v 1 vgw6*8

totalmimagemnumber 12,505 810 4,752 1,188 13,500 vg9v5gw84 1,000 v*5g84*8

1 BTF Database

In the context of our measured material database, we briefly explain the acqui-
sition setup used for capturing the database and the material samples contained
in the database. Subsequently, we discuss the main differences of this measured
database to previous material databases.

1.1 Acquisition Setup

Modern acquisition devices (e.g. [8]) are capable of capturing BTFs at high spa-
tial and angular resolution in a practical way. This way, thousands of images can
be acquired automatically which allows us to consider the material characteris-
tics under densely sampled view-light configurations.
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For each of the material instances, we measured a full BTF with 22,801 high
dynamic range images providing a bidirectional sampling of the utilized 151 view
directions and 151 light directions. Here, the view directions and light directions
are evenly sampled in the upper hemisphere above the sample as illustrated in
Fig. 1. The spatial resolution of the BTFs is 512 × 512 texels. Furthermore, we
also measured the surface geometry using a standard structured light approach.

Fig. 1. Sketch of the acquisition setup (from top): The utilized 151 cameras (red) and
151 light sources (yellow) are arranged on a hemisphere above 4 samples

1.2 Measured Material Samples

For our database, we considered material categories which we expect to be rel-
evant for scene analysis due to their presence in buildings, offices and streets.
Therefore, the materials contained in our database can be categorized into the
semantic classes carpet, fabric, felt, leather, stone, wallpaper and wood. For each
of the individual material classes, we measured 12 different material instances
to represent the intra-class variance. The respective material instances are illus-
trated in the Figures 2, 3, 4, 5, 6, 7, 8. As can be seen clearly, the variation in
appearance differs for the different categories.

1.3 Differences to Previous Databases

Whereas most standard databases such as CUReT [3], KTH-TIPS [5], KTH-
TIPS2 [2], MPI-VIPS [6] and the spectral material database in [7] are restricted
to only a sparse sampling of different view and light directions, our new material
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Fig. 2. Material samples in the category carpet

database provides a significantly denser sampling. In particular, we consider all
the 22,801 combinations of the utilized 151 view directions and 151 light di-
rections for each acquired physical material sample as shown in Table 1. This
is an essential prerequisite for preserving the mesoscopic effects in material ap-
pearance in an accurate way. In total, our database contains 1,915,284 million
images. A second objective of our database is to better capture the intra-class
variances of each individual material category by containing measurements from
12 different material instances. While these individual material instances share
some common characteristics of the corresponding category, they also cover a
large variability.

2 Synthesized Database

The description of our synthesized database is followed by a discussion of its
main difference to other databases. Subsequently, we discuss the comparison
of using our synthesized database to using previous synthesized databases for
classifier training.

2.1 Generation of Renderings

The main objective of our synthesized database is to provide images where mate-
rial appearance is depicted in high quality under complex real-world environment
conditions. For this reason, this database is extremely valuable for applications
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Fig. 3. Material samples in the category fabric

which focus on real-world scenarios beyond the controlled environment being
present in a lab.

The central requirements for establishing a synthetic database are:

– a photo-realistic depiction of the digitized materials

– the selection of the conditions under which the materials should be rendered

– an efficient rendering technique to synthesize a sufficiently large amount of
images

Using the acquired surface geometry and the densely sampled BTFs of the in-
dividual material instances in our database described in Section 1 allows synthe-
sizing the materials under a huge range of almost arbitrary viewing and lighting
conditions while still preserving characteristic material traits in an accurate way.
The viewing and lighting conditions used for generating the synthetic database
should be representative for the conditions under which the materials will appear
during classification. To account for the illumination conditions, we utilize envi-
ronment maps which are used for scene relighting (e.g. [4]). For our synthesized
database, we considered five representative HDR environment maps as shown
in Figure 9 in our synthesizing process to sample the illumination conditions
one encounters in these settings. Please note that the choice of the utilized envi-
ronment maps can be varied or extended to approach the expected illumination
conditions.
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Fig. 4. Material samples in the category felt

Using 21 different rotations of the material sample (ϕ = −67.5◦, . . . , 67.5◦ ×
θ = −45.0◦, . . . , 45.0◦) and two different distances to also consider the scale-
induced variations in appearance of the materials, we synthesize images for each
combination of material sample and environment map. To additionally increase
the variance in the illumination conditions, we also rotated the utilized 5 envi-
ronment maps (six different rotations) around the sample. In total, we obtain
21 ·2 ·5 ·6 ·12 = 15,120 images for each of the semantic classes of our synthesized
database. Example renderings are shown in Figure 10.

The rather high number of 105,840 synthesized images, for which still only a
limited amount of viewpoints, scales and illumination conditions has been used,
clearly indicates that an efficient rendering technique is mandatory for synthe-
sizing all these images in a reasonable amount of time. To meet this requirement,
we used an OpenGL based renderer and simulate the HDR environments in this
renderer via approximating it in a similar way to the work in [1] with 128 direc-
tional light sources. These light sources are distributed representatively over the
environment via a relaxation algorithm.

2.2 Differences to Previous Databases

The CUReT database [3], the KTH-TIPS database [5], the KTH-TIPS2 database
[2], the MPI-VIPS database [6] and the spectral material database in [7] only
consider controlled illuminations and a single ambient illumination (KTH-TIPS2
[2], MPI-VIPS [6]). However, considering only this severely limited fraction of
possible illumination conditions within a lab environment is not sufficient for
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Fig. 5. Material samples in the category leather

material classification under natural illumination. In contrast, our synthesized
database incorporates different natural illuminations and, in the accompanying
paper, we show the benefit of this data for material classification in complex
real-world scenarios. While natural illumination has also been considered in the
Flickr Material Database (FMD) [9], our approach of synthesizing data does not
rely on manually acquiring and segmenting the images which severely limits the
number of images included in the FMD. Following our synthesis technique, it is
easily possible to synthesize thousands of images fully automatically.

2.3 Using our Synthesized Database vs Using Previous Synthesized
Training Data for Classifier Training

Due to lack of space, we report more details on this experiment here in the
supplementary material. Unfortunately, a comparison to other approaches using
synthesized data, such as [6], is not directly possible. While the material shaders
and the selected illumination conditions utilized for the generation of synthetic
data in [6] are chosen to correspond up to some degree to the conditions during
the acquisition of the KTH-TIPS2 database, our synthesized data considers dif-
ferent material categories which we expect to be more relevant for scene analysis
due to their presence in offices, buildings and streets. Our data does not focus
on the controlled illumination conditions in a lab environment and, instead, ap-
proaches the more complex real-world conditions in arbitrary environments. The
only class we directly share with the MPI-VIPS and the KTH-TIPS2 databases
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Fig. 6. Material samples in the category stone

is the class wood. For analyzing the difference of using shaders with the re-
production of the illumination conditions present in the test dataset and our
data synthesized from several real-world wood samples under more complex il-
lumination conditions, we first train a wood-vs-rest classifier on the synthesized
MPI-VIPS database and perform a classification on the KTH-TIPS2 database.
Here, 61.57% of the images in the wood category of the KTH-TIPS2 database
are classified correctly. In contrast, we also perform an experiment where we
replaced the wood images of the MPI-VIPS database in the training set with
images taken from our OpenGL-synthesized data with environmental illumina-
tion for the class wood. Even though the illumination conditions in our data
are rather different in comparison to the ones present during the acquisition of
the KTH-TIPS2 database, we obtain a correct classification of 76.16% for the
images with the label wood of the KTH-TIPS2 database which represents a sig-
nificant improvement. This clearly demonstrates the benefit of using accuratly
digitized materials for material classification from synthesized data and taking
the intra-class variances into account.

3 Future Work

Currently, we are extending our database with the categories artificial leather,
granules, laminate, metal, sponge and tile depicted in Fig. 11, Fig. 12, Fig. 13,
Fig. 14, Fig. 15, Fig. 16. Again each of the categories is composed of 12 material
samples to account for the intra-class variance within a material category. This
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Fig. 7. Material samples in the category wallpaper

data will be published together with the BTF database introduced in the paper.
As a result, the database will contain dense BTF measurements of 156 material
samples containing 156 · 22,801 = 3,556,956 images in total.
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Fig. 8. Material samples in the category wood

Symposium on Virtual Reality, Archeology and Cultural Heritage VAST 2011. pp.
25–32 (2011)

9. Sharan, L., Rosenholtz, R., Adelson, E.H.: Material perception: What can you see
in a brief glance? Journal of Vision 8 (2009)



10 Michael Weinmann, Juergen Gall, Reinhard Klein

Fig. 9. Three of the environments used during the synthesizing process. These three
environment maps are publicly available as mentioned in the paper
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Fig. 10. Exemplary illustration of the images in the synthesized database for 2 of the
84 different material samples: The number of viewpoints is determined by the number
of different viewing directions and relative distances between the virtual camera and
the sample. In our current database, we incorporated two different scales. However,
incorporating more different scales can be achieved easily with our rendering pipeline.
Per row, the environment remains the same and only the sample is rotated. For the
illustrated examples, the main part of the light comes from the top, i.e. when the
samples are rotated in a way so that more light hits the surface the surface appears
brighter. Please note that only the rotation around one axis is illustrated in the figure.
We also combined this rotation with a rotation of the sample by up to 67.5◦ to the left
and right respectively. To further increase the variance of the illumination conditions
in our database, we additionally rotated the utilized 5 environment maps.
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Fig. 11. Material samples in the category artificial leather

Fig. 12. Material samples in the category granules
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Fig. 13. Material samples in the category laminate

Fig. 14. Material samples in the category metal
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Fig. 15. Material samples in the category sponge

Fig. 16. Material samples in the category tile


