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In this supplemental material we present additional plots that are meant to add to the
reader’s understanding of the open set recognition problem and our solution. We start
with a look at SVM decision surfaces, and then offer a discussion of the difference in
observed performance when Accuracy or F-measure is reported as an evaluation statis-
tic. We also provide plots showing performance with alternate priors, and discuss some
problems we encountered when attempting to apply Naive Bayes Nearest Neighbor as
a comparison approach, which other researchers may be interested in.

1 SVM Decision Surfaces

In Fig. 2 of the main paper we showed the problems with existing models for two known
classes (“1” and “2””) when unknown classes (““?”) are possible. In Fig.[I| we show that
same figure again with the decision surface for the P;-SVM. Pink is the region labeled
as class 1 by just the one-class RBF SVM, light blue is the region labeled as class 1
by just the binary RBF SVM, green is the region labeled as class 1 by both the P;-
SVM and the binary RBF SVM (recall that the P;-SVM uses a binary SVM as a basis),
and magenta is the region labeled as class 1 by all three models. For the P;-SVM, the
threshold § was set at 0.055, which is 0.5 x openness for two known classes and one
unknown class — the minimal open set assumption for the data. In Fig. 2] we show
3D surface plots of the decision function surfaces for all three models. Note how the
Pr-SVM approaches zero away from the positive training data while the other models
degrade far more slowly.

2 Multi-class Open Set Recognition Accuracy

The main paper presents the F-measure statistic for the experiments examining the bi-
nary decision component of object detection and multi-class open set recognition (we
explain why in more detail below). Nonetheless, reviewers may be interested in recog-
nition accuracy plots if for no other reason than to see that there are no hidden surprises.
Accuracy is a statistical measure defining how well a recognition algorithm estimates
correct decisions out of all decisions made. A decision can always be classified into
one of four possibilities: true positives TP, true negatives TN, false positives F'P, and
false negatives F'N. Thus accuracy is formally defined as:

Accuracy = TP+ TN (D
Y= TPYTN{FP+FN
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Fig. 1: The decision regions from Fig. 2 of the main paper with the addition of a P;-SVM region.
Pink is the region labeled as class 1 by just the one-class RBF SVM, light blue is the region
labeled as class 1 by just the binary RBF SVM, green is the region labeled as class 1 by both
the Pr-SVM and the binary RBF SVM, and magenta is the region labeled as class 1 by all three
models. The one-class RBF SVM defined by the support vectors circled in red cannot separate
known classes “1” and “2”. The binary RBF SVM defined by the support vectors with blue
squares always classifies the unknown classes (“?”’) as members of a known class. The P;-SVM
(also leveraging the support vectors with blue squares) does not suffer the same limitations as
the other models — note the good separation between classes “1” and ‘“2”, and the right-hand
decision boundary in front of the unknown classes provided by a threshold over probability of
class inclusion.

Fig. [3] shows accuracy plots corresponding to the multi-class open set recognition
experiments for the LETTER and MNIST benchmarks shown in Fig. 5 of the main
paper. Again we see low performance for all baseline algorithms for these basic OCR
tasks. Also consistent with the F-measure plots in the main paper, the P;-SVM achieves
more stability and considerably better performance over all other approaches. One cu-
rious effect in these plots, however, is the performance of the one-class RBF SVM. It
is the worst among all evaluated approaches, but is also the only approach that starts
improving after 0% openness (a fully closed problem). Why does this happen?

The primary reason is that the one-class SVM tends to classify most samples as neg-
atives even if they are actually true positives. As the problem openness increases, the
number of true negatives (samples from classes unseen during training) also increases,
and because of its bias, the one-class SVM has an advantage in classifying such sam-
ples. Thus we see a corresponding increase in overall accuracy. The primary goal of
open set recognition techniques is to predict the correct class label for a test sample
if that class is known, or to reject that sample as an “unknown” if not. Since open set
problems often consist of far more negative samples than positive samples, classify-
ing most samples as negatives can actually increase recognition accuracy in evaluation.
This, of course, mis-represents the actual performance of the model, which is ineffec-
tive for labeling true positives. Because recognition accuracy is not appropriate for open
set problem evaluation, we would like to calculate some other statistic that gives more
weight to correct positive classifications.
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Fig. 2: Decision surfaces for (a) One-class SVM, (b) Binary SVM and (c) P;-SVM for the ex-
ample of Fig. 2 in the main paper. The black coarse mesh is at z = 0, with class 1 at z = 1,
class 2 at z = —1 and unknowns at z = 0. The P;-SVM returns to near zero away from training
samples, but the binary surface stabilizes around 0.4 (far from zero) at the unknown points; the
binary surface is descending so slowly that even if we extend it to [0,100]x[0,100] it is still well
above zero.
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(a) Multi-Class Open Set Accuracy for LETTER
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(b) Multi-Class Open Set Accuracy for MNIST

Fig. 3: Multi-class open set recognition accuracy results for LETTER (a) and MNIST (b). These
plots correspond to Fig. 5 in the main paper. Error bars reflect standard deviation, and approaches
marked with “Thresh.” have been augmented to support rejection. The increasing accuracy for
the one-class RBF SVM highlights the problem of using accuracy as a statistical measure for
recognition. Since open set problems often consist of far more negative samples than positive
samples, a biased classifier that produces mostly negative decisions, such as the one-class SVM,
may look better than it really is as problems grow to be more open.

3 F-measure Details

With the above accuracy result for the one-class RBF SVM in mind, we turn to a com-
pelling argument that was raised by Scheirer et al. in Sec. 5 of [3]], which advocates
F-measure as a more appropriate statistic compared to accuracy for open set problem
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Fig. 4: F-measure performance for the binary decision component of an open set object detection
task for an open universe of 88 classes. Results are calculated over a five-fold cross-data set style
test with images from Caltech 256 used for training and images from Caltech 256 and ImageNet
for testing; error bars reflect standard deviation, and approaches marked with “Thresh.” have been
augmented to support rejection. This figure is a replication of Fig. 4 from the main paper, with
an additional curve for the one-class RBF SVM. It can be seen that the P;-OSVM is measurably
better than a standard one-class SVM (its basis), which essentially fails for this problem.

evaluation. From information retrieval, we know that precision and recall are the mea-
surements that quantify the number of correctly classified true positive examples to all
false and true positives (Eq. [2), and number of correctly classified true positive exam-
ples to all the available positive examples (Eq. [3), respectively.

.. TP
Precision = m (2)
TP
Recall = ——+—
T TPYFN )

F-measure calculates a weighted average of precision and recall, allowing us to forgo
calculating full Precision-Recall curves to find consistent points across each algorithm
at hand. The F-measure is defined as:

Precision x Recall
F- =2 X 4
feasure Precision + Recall @

How does F-measure compare to accuracy for open set recognition evaluation?
Figs. @] and [3] are replications of Figs. 4 and 5 in the main paper, but with the prob-
lematic one-class RBF SVM included in the plots. As F-measure more heavily weights
the number of correct decisions in detecting positive classes, we no longer see im-
provement in terms of F-measure for the one-class SVM as openness increases. Thus
misleading impressions can be avoided. The improvement observed for the Pr-OSVM
over its basis, the one-class RBF SVM, can also be seen in these plots (this is not shown
in the main paper).
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(a) Multi-Class Open Set F-measure for LETTER
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(b) Multi-Class Open Set F-measure for MNIST

Fig. 5: Multi-class open set recognition F-measure results for LETTER (a) and MNIST (b).
These plots replicate Fig. 5 in the main paper, with additional curves for the one-class RBF
SVM. Error bars reflect standard deviation, and approaches marked with “Thresh.” have been
augmented to support rejection. Different from the accuracy plot in Fig. [3] the one-class SVM
follows the trend of all other approaches shown by decreasing in performance as the problem
grows to be more open. F-measure does not inflate the performance of classifiers that have a
strong negative bias. Like Fig.[d] the Pr-OSVM is substantially better than a standard one-class
SVM (its basis), which performs poorly on these problems.
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4 Alternate Priors

All the experiments presented in the main paper and above considered equal priors
(p(y)) per class among the known classes, as described in the main paper. Reviewers
might be interested to know the impact on F-measure when priors per class are com-
puted from the known frequency of classes. This type of information is not available
in all cases, but scenarios do exist where we can get good estimates. For instance, it
is well known that some letters occur much more frequently (e.g. “e¢” with frequency
of 12.702%) than others (e.g. “z” with frequency of 0.074%) in the English language.
Fig. [6] shows F-measure results for the LETTER data set when setting the priors to
the frequency of occurrence of letters in a natural language corpusﬂ With a significant
variation in the frequency of letters in a natural language corpus, P;-SVM retains its
stability in terms of F-measure compared to other evaluated approaches.

F-Measure

0% 2% 4% 6% 8% 10% 12% 14%
Openness
== P,-SVM P,-OSVM % MAS Thresh.
=1-vs-Rest Mult. RBF Thresh. “*~Pairwise Mult. RBF Thresh. *® Logistic Regression Thresh.
One-Class RBF

Fig. 6: The above plot shows the F-measure results for the LETTER data set when priors p(y)
in Eq. 3 of the main paper are set to the frequency of occurrence of letters in a natural language
corpus. This plot corresponds to the same experiment presented in Fig. [5[a), but with only ap-
proaches producing probabilities (via calibration or inherently) as output shown. The P;-SVM
once again is more stable than existing algorithms, and achieves high F-measure scores as the
level of openness increases.

5 Naive Bayes Nearest Neighbor as a Comparison Approach

While one could consider hybrid approaches such as thresholding Optimal Naive Bayes
Nearest Neighbor (ONBNN) [[1] for open set recognition, these algorithms do not scale
very well computationally, in part because they keep all data in memory and their asso-
ciated optimizations do no scale well with increasing feature dimensions. In [1], results
are presented for only five classes from Caltech 101 using SIFT features from 15 down-
sampled training image per class. We considered well over 1,000 times more images
with 3,780 dimensional features for our object detection experiment. Using available

! Frequencies taken from: http://en.algoritmy.net/article/40379/Letter-frequency-English
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code, we determined that for each positive class to produce one testing point required
more than 72 CPU hours, compared to under a minute using our P;-SVM. As the graph
in Fig. 4 requires 5 randomized runs, 88 classes and 6 levels of openness, to complete
comparative testing with ONBNN would take more than 190,000 CPU hours, or about
22 CPU years. Even with moderate parallelism, this experiment was well beyond the
scope of this paper. An implementation such as [2], which uses a Local Naive Bayes
Nearest Neighbor algorithm can yield up to a 100x speedup, but would only reduce
the total runtime to an order of CPU months. In general, the practical runtime of an
algorithm should always be considered in addition to theoretical optimization.
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