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1 Introduction

The aim of this supplementary material is to provide further experimental de-
tails which were not included in the main article due to space limits (Sec. 2)
and to give more details concerning the choice of our proposed RANSAC-like
optimization strategy (Sec. 3).

Specifically, in Sec. 2 we show further results, obtained with the CUHK
Square Test dataset only in which we partially corrected the annotations pro-
vided by the authors of [10], adding some pedestrian bounding boxes missing in
the original ground truth.

As mentioned in the main article (Sec. 6), we used for our experiments the
MIT Traffic and the CUHK Square datasets adopted by Wang et al. in [10].
We used the videos downloaded from [8] and [2], respectively. We followed the
instructions contained in the README files available at [8] and [2], in which it
is suggested to resize into 6 times the frames of the MIT Traffic dataset and 2
times the frames of the CUHK Square dataset. The final frame resolutions are:
2880 by 4320 (MIT Traffic) and 1152 by 1440 (CUHK Square). The results are
shown in Fig. 4 in the main article and they have been obtained using the original
ground truth downloaded together with the videos and used by the other authors
we compare with. By contrast, in Sec. 2 of this Supplementary Material we show
further results on one of the videos in which we have partially corrected some
errors in the original ground truth data.

Finally we point out that the comparison with other authors and other ap-
plication settings is not always easy. For instance, the very low resolution videos
we adopted make the pedestrian detection task very challenging for “standard”
generic pedestrian detectors. As mentioned in Sec. 3 of the main article, more
sophisticated detectors such as [3] completely failed when tested with our videos
because of the low resolution and could not be used as a baseline for the ex-
traction of our candidate positive samples (Wang et al. in [10] also tested the
Felzenszwalb’s detector [3] on the same videos obtaining completely unreliable
results). Conversely, the authors of [9] used two benchmarks for their experi-
ments, one of which is the Mind’s Eye’s Dataset Year 2 which is not publicly
available at the moment. Anyway, the target videos used in [9] have a much
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higher image resolution than the ones used in our experiments, a resolution
which is much closer to our source dataset (the INRIA dataset), thus we be-
lieve that these benchmarks are less challenging than the MIT Traffic and the
CHUCK Square data and, hence, that our approach should work pretty well on
that videos.

On the other hand, In Sec. 3 we better motivate our choice of using a stochas-
tic RANSAC-like strategy to deal with the large number of false positives pro-
duced by the generic detector in the initial pedestrian candidate set T . In that
section we examine other optimization approaches and we show that they cannot
be applied to our problem.

2 Further Results on the CUHK Square Test Set

We noticed that some pedestrians in both the CUHK Square Train and the
CUHK Square Test datasets are missing. Most of them are very small, but some
others are larger. Some examples are shown in Figure 1(a).

For this reason we decided to augment the ground truth data with missing
pedestrians. Note that all the experiments presented in the main article (Figures
1-3 and Tables 1-2 in the article) have been obtained using only the ground truth
data used in [10] and downloaded from [8] and [2]. However, for completeness,
we show here the results obtained with a more complete ground truth.

The criteria we adopted for adding new pedestrian bounding boxes are the
following. We used only the CUHK Square Test dataset and we corrected the
annotations of all the 100 frames (when necessary). We added annotations for all
those pedestrians whose resulting bounding box size (“padding” included) in the
final 1152 by 1440 enlarged resolution frame was at least 64 pixels width. This
choice was done because 64× 128 is the minimum size sliding window for HOG
based systems. However, occasionally some added pedestrians have a hight lower
than 128 pixels. We also added truncated pedestrians but only if at least the full
upper body is visible. An example of a new annotation is shown in Figure 1(b).

Using this new ground truth, we obtained the results shown in Figure 2. The
red dash-dotted line with diamonds (SSCC-new GT) shows the results of our
system with the new ground truth. All the other ROC curves in the same figure
have been obtained using the original ground truth [8, 2], thus a direct comparison
is not possible. However, we plotted the other ROC curves to allow the reader
to get an intuitive idea of the difference depending from the annotations.

Specifically, in the high precision region of the graph (FPPI less than 1),
(SSCC-new GT) shows better results than the ones we obtained using the origi-
nal ground truth (SSCC). This is probably due to the fact that some true pedes-
trians, correctly detected by our system, are wrongly penalized as they were
false positives using the original ground truth (see Figure 1(c)). Conversely, in
the high recall region of the graph (FPPI greater than 1), our method obtained
better results with the original ground truth. This is probably due to the fact
that some of the pedestrian bounding boxes we added are very small or the con-
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(a) (b)

(c)

Fig. 1. Ground truth comparison. (a) The original ground truth [2] for an example
frame of the CUHK Test dataset. (b) Our ground truth. The arrow shows the added
annotation. Note that we did not added any annotation for the very small pedestrians
in the background. (c) The results of our system with this image and the new ground
truth. In this case there is an improvement because the leftmost pedestrian, whose
bounding box is missed in the original ground truth, is wrongly counted as a false pos-
itive in the experiments performed in the article. However, all the other systems tested
on the same datasets obtained their results using the same, incomplete ground truth,
thus supposedly our system is not penalized more than the others. Unfortunately, since
we do not have the code of the other approaches we could not repeat the experiments
with our ground truth.
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Fig. 2. Experiments on the CUHK Square Test dataset. The red dash-dotted line
with diamonds (SSCC-new GT) shows the only results obtained using our ground
truth. (SSCC-new GT) and (SSCC) are exactly the same system (i.e. the approach we
proposed in the main paper), with exactly the same parameter setting and the same
classifier ensemble (which were not retrained), being the used ground truth at testing
time the only difference between these two curves.

tained human body is highly occluded or truncated and our system is not able
to detect these difficult instances.

We can provide our new ground truth for the CUHK Square Test set to
people possibly interested in testing their approaches on the same data.

3 Optimization Approaches for Subset Selection

The main problem addressed in our paper, i.e., how to select candidate pedes-
trian samples for training a target classifier directly on target data but without
using new labels, is formulated in the Eq.s (3) and (4) of the main paper that
we rewrite below for clarity.

TG = arg min
Ti⊆T

L(CTi
, S), (1)

subject to:

CTi
= argmin

C∈C
R(C) + θλ(Ti, Ni). (2)

Since L(·) ∈ [0, 1] (see Eq. (6) of the main article), using L′(·) = 1 − L(·),
Eq. (1) above can be transformed into:

TG = arg max
Ti⊆T

L′(CTi
, S). (3)
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Both L(·) and L′(·) are set functions (because they depend on the set Ti)
and the set function maximization problem is known to be NP-hard [5]. When
the function to be maximized (L′(·)) satisfies some specific assumptions (e.g.,
submodularity or adaptive submodularity), the corresponding optimization can
be solved using some simple (but in some cases computationally very expensive)
greedy algorithms [5–7]. However, our problem formulation (Eq.s (1)-(2) above)
does not satisfy these properties and different strategies must be adopted. The
aim of the following subsections is to show why submodularity-based greedy
algorithms cannot be applied in our case and to justify our choice in favor of a
RANSAC-like algorithm as presented in the main paper.

3.1 Submodularity

In [5] the authors report a few simple greedy algorithms which can be used in
order to solve problems formulated as below:

max
A⊆V

f(A), subject to some constraints onA, (4)

where A and V are sets. These greedy algorithms are guaranteed to reach a good
approximation to the optimal solution of the NP-hard optimization problem.
However, they cannot be applied to our case because f(·) needs to belong to
the submodular function class and L′(·) is not submodular. We provide below an
informal proof starting from the definition of submodularity [5].

Definition (Discrete derivative). For a set function f : 2V → R, A ⊆ V and
e ∈ V , let ∆f (e|A) := f(A ∪ {e})− f(A) be the discrete derivative of f(·) at A
with respect to e.

Given the previous definition, the submodularity property of a set function can
then be defined as follows.

Definition (Submodularity). A function f : 2V → R is submodular if for
every A ⊆ B ⊆ V and e ∈ V \B it holds that:

∆f (e|A) ≥ ∆f (e|B). (5)

We show now why L′(·) is not submodular and, hence, greedy submodular
optimization algorithms cannot be applied for solving Eq.s (1)-(2) above.

The reason for which L and L′ are not submodular is their non-smooth
dependence on the results of the optimization in Eq. (2). For instance, suppose
that the class of classifiers C from which CTi

is chosen is the linear Support Vector
Machine classifiers, which is what we adopted in our experiments. Moreover,
suppose that T1, T2 are two different training sets (random subsets of candidate
pedestrians in our case), T1 ⊂ T2 and that H1, H2 are the decision hyperplanes
respectively obtained minimizing Eq. (2) with respect to T1 and T2. Finally,
suppose that sample x is such that x /∈ T2.

Let T ′
1
= T1 ∪ {x} and T ′

2
= T2 ∪ {x} and H ′

1
, H ′

2
be the corresponding

decision hyperplanes obtained minimizing Eq. (2) with respect to T ′
1
and T ′

2

respectively. We can easily choose x far from H1 and close to H2 such that:
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– Adding x to T1, the resulting decision hyperplane H ′
1
does not change (H ′

1
=

H1).
– Adding x to T2, the resulting decision hyperplaneH ′

2
does change (H ′

2
6= H2)

(e.g., x is a support vector of H ′
2
).

SinceH ′
1
= H1, then, by definition, CT1

= CT ′

1
, hence L′(CT ′

1
, S) = L′(CT1

, S).
However, since H ′

2
6= H2, we have that L′(CT ′

2
, S) 6= L′(CT2

, S) and, for some
x, we can have L′(CT ′

2
, S) > L′(CT2

, S) (which happens when the generalization
ability of H ′

2
is improved with respect to the generalization ability of H2), which

violates the definition in (5) (with: A = T1, B = T2 and e = x).

3.2 Adaptive Submodularity and Noise

In [6] Krause and Golovin extend the submodularity framework to adaptive sub-
modularity and propose some greedy algorithms which can be used to solve adap-
tive submodular optimization problems. An interesting application of adaptive
submodular optimization is active learning, where one must adaptively select
data points to label in order to maximize the performance of a classifier trained
on the selected data points.

The key idea is to substitute the function f(·) in Eq. (4) with fave(π), where
π is a policy (e.g., a sample selection policy), the states (e.g., the labels) of the
sample set are drawn from a given probability distribution Φ and the score of π,
fave(π), is computed as the expectation over Φ. The definition of adaptive sub-
modularity is then obtained extending the definition of discrete derivative (see
Sec. 3.1) taking into account the expected increment of fave(π) over Φ. Finally,
Krause and Golovin also extend the greedy algorithms for submodular function
maximization to deal with adaptive submodular function optimization problems.
These greedy algorithms can be computationally very expensive but the authors
provide lower bounds to the optimal solution of the original optimization prob-
lem.

It is not completely clear to us if our score function L′(·) can be shown to
be adaptive submodular. Anyway, it can be easily shown that it is not adaptive
monotone [6] because our pedestrian candidate set T contains outliers and the
algorithms proposed in [6] can only be applied to free-noise samples (i.e., adaptive
monotone functions). For more details we refer the reader to [6].

The noise case is dealt with in [7], where Guillory and Bilmes propose a greedy
algorithm for optimizing the set selection problem in active learning problems
with label noise. However, this algorithm can be applied only to submodular
functions and we showed in Sec. 3.1 that L′(·) is not submodular.

3.3 Our RANSAC-like Optimization Strategy

We are not aware of any other greedy optimization strategy which can be applied
to the problem formulated as in Eq.s (1)-(2) (respectively, Eq.s (3)-(4) of the
main article). As we showed in the two previous subsections of this Supplemen-
tary Material, submodular or adaptive monotone submodular function-based
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greedy optimization approaches cannot be applied because of the specific nature
of our problem. For this reason we adopted a stochastic strategy conceptually
similar to the well known RANSAC algorithm [4]. RANSAC techniques have
been successfully adopted in many Computer Vision problems in more then 30
years and are usually considered very robust [1].

As explained in the main article, Eq.s (1)-(2) are solved transforming the set
selection problem in a RANSAC-like procedure, where we build models (classi-
fiers) using random subsets of target data and we verify the accuracy of each
classifier on the source set S, using the implicit assumption that target and source
domains are related. This is the main novelty we propose and we provided in
the paper the experimental results which confirm its validity.
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