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1 Proof of Technical Lemmas

This section is devoted to proving several technical lemmas used in the paper.

1.1 Proof of Lemma 1

We need the following proposition which is almost standard in compressive sens-
ing.

Proposition 1. Let T ⊆ G be a subset of the groups. If the optimal solution

β∗ = argmin
β

1

2p
∥z − Ψβ∥2 + λ∥β∥G,2 subject to βT c = 0

obeying ∥ 1
pΨ

⊤
T c(z − Ψβ∗)∥T c,∞ < λ, then any optimal solution

β̂ = argmin
β

1

2p
∥z − Ψβ∥2 + λ∥β∥G,2

must also satisfy β̂T c = 0.

Proof. Let us express β̂ = β∗ + h. Some algebraic manipulations show that

1

2p
∥z − Ψ(β∗ + h)∥2 + λ∥β∗ + h∥G,2

≥ 1

2p
∥z − Ψβ∗∥2 − ⟨1

p
Ψ⊤(z − Ψβ∗),h⟩+ 1

2p
∥Ψh∥2

+λ
∑
g∈G

(
∥β∗

g∥+ ⟨sgn(β∗
g),hg⟩

)
+ λ

∑
g∈T c

∥hg∥

=
1

2p
∥z − Ψβ∗∥2 + λ∥β∗∥G,2 +

1

2p
∥Ψh∥2 + λ

∑
g∈T c

(∥hg∥ − ⟨ 1

pλ
Ψ⊤

g (z − Ψβ∗),hg⟩),
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where the “≥” follows from the simple inequality ∥a + b∥ ≥ ∥a∥ + ⟨a, b⟩/∥a∥,
the “=” follows from the optimality conditions showing that ∀g ∈ T , 1

pΨ
⊤
g (z −

Ψβ∗) = λsgn(β∗
g). Assume that ∃g ∈ T c,hg ̸= 0. Since by assumption ∀g ∈ T ,

∥ 1
pΨ

⊤
g (z − Ψβ∗)∥ < λ, from the preceding inequality we have

1

2p
∥z − Ψβ̂∥2 + λ∥β̂∥G,2 >

1

2p
∥z − Ψβ∗∥2 + λ∥β∗∥G,2,

which contradicts the optimality of β̂. Therefore, we have hT c = 0, which proves
the claim. ⊓⊔

Proof (of Lemma 1). Part (a): Let us consider a solution β∗ to

min
β

1

2p
∥z − Ψβ∥2 + λ∥β∥G,2 subject to βT c = 0.

The optimality conditions show that

1

p
Ψ⊤

T (z − ΨTβ
∗
T ) = λsgn(β∗

T ),

which implies
β∗
T = (Ψ⊤

T ΨT )
−1(Ψ⊤

T z − λpsgn(β∗
T )). (1)

The remaining task is to check that ∥ 1
pΨ

⊤
T c(z−Ψβ∗)∥T c,∞ < λ for the selection

of λ in the lemma and then apply Proposition 1. Indeed, ∀g ∈ T c,

∥1
p
Ψ⊤

g (z − Ψβ∗)∥ = ∥1
p
Ψ⊤

g (z − ΨTβ
∗
T )∥

≤ 1

p
∥Ψ⊤

g z − Ψ⊤
g ΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T z∥+ λ∥Ψ⊤

g ΨT (Ψ
⊤
T ΨT )

−1sgn(β∗
T )∥

< δλ+ (1− δ)λ = λ,

where the “≤” uses (1) and triangle inequality, and the “<” follows the condition
on λ. This proves part (a).

Part (b): The optimality condition of β̂ is

1

p
Ψ⊤

T (z − ΨT β̂T ) = λsgn(β̂T ).

After some algebraic manipulations we obtain

∥β̂T − β̄T ∥∞ = ∥(Ψ⊤
T ΨT )

−1(Ψ⊤
T (z − Ψβ̄)− λpsgn(β̂T ))∥∞

≤ ∥(Ψ⊤
T ΨT )

−1∥T,∞∥Ψ⊤
T (z − Ψβ̄)− λpsgn(β̂T )∥T,∞

≤

∥∥∥∥∥
(
1

p
Ψ⊤

T ΨT

)−1
∥∥∥∥∥
T,∞

(∥∥∥∥1pΨ⊤
T (z − Ψβ̄)

∥∥∥∥
T,∞

+ λ

)
. (2)

This completes the proof. ⊓⊔
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1.2 Proof of Lemma 2

We need the following proposition which gives a concentration bound on the
element-wise infinity norm of a random matrix.

Proposition 2. Let A = (aij) ∈ Rm×n is a random matrices whose entries has
variance no larger than σ2. Then we have

∥A− E[A]∥∞,∞ ≤ σ

√
mn

η

holds with probability at least 1− η.

Proof. From Chebyshev’s inequality we get that

P
(
|aij − E(aij)| ≥

√
mnσ/

√
η
)
≤ η

mn
.

By union of bound we get

P
(
max
i,j

|aij − E(aij)| ≥
√
mnσ/

√
η

)
≤ η.

This proves the claim.

Proof (of Lemma 2). Since ∥ 1
p (Ψ

⊤
T ΨT )

−1∥T,∞ ≤ l holds with high probability

and the elements of Ψ are bounded, we have that the entries of (Ψ⊤
T ΨT )

−1Ψ⊤
T ΨT c

have variance o(1/p). From Proposition 2 we get that

∥(Ψ⊤
T ΨT )

−1Ψ⊤
T ΨT c − E[(Ψ⊤

T ΨT )
−1Ψ⊤

T ΨT c ]∥∞,∞ = o(
n

√
pη

).

holds with probability at least 1− η. Therefore, with high probability

∥(Ψ⊤
T ΨT )

−1Ψ⊤
T ΨT c∥T c,∞

≤ ∥E[(Ψ⊤
T ΨT )

−1Ψ⊤
T ΨT c ]∥T c,∞ + ∥Ψ⊤

T ΨT )
−1Ψ⊤

T ΨT c − E[Ψ⊤
T ΨT )

−1Ψ⊤
T ΨT c ]∥T c,∞

≤ 1− 2δ + q1/2n∥Ψ⊤
T ΨT )

−1Ψ⊤
T ΨT c − E[Ψ⊤

T ΨT )
−1Ψ⊤

T ΨT c ]∥∞,∞

≤ 1− 2δ + o

(
n2

√
pη

)
≤ 1− δ, (3)

where the last inequality follows when p is sufficiently large. Next, we show that
with high probability

λ >
∥Ψ⊤

T cz − Ψ⊤
T cΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T z∥T c,∞

pδ
.
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Indeed, since z = ΨT β̄T + ε, we have that

1

p
∥Ψ⊤

T cz − Ψ⊤
T cΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T z∥T c,∞

=
1

p
∥Ψ⊤

T cε− Ψ⊤
T cΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T ε∥T c,∞

=
1

p
∥Ψ⊤

T c(I − ΨT (Ψ
⊤
T ΨT )

−1Ψ⊤
T )ε∥T c,∞

≤ √
q

∥∥∥∥1pΨ⊤
T c(I − ΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T )ε

∥∥∥∥
∞

.

Since I − ΨT (Ψ
⊤
T ΨT )

−1Ψ⊤
T is a projection matrix, we get that the rows of the

matrix Ψ⊤
T c(I−ΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T ) lie within a bounded ball. Also, it is easy to see

that ε and Ψ⊤
T c(I − ΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T ) are uncorrelated, and thus E[ 1pΨ

⊤
T c(I −

ΨT (Ψ
⊤
T ΨT )

−1Ψ⊤
T )ε] = 0. Therefore, from Proposition 2 we know that with

probability at least 1− η,

1

p
∥Ψ⊤

T cz − Ψ⊤
T cΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T z∥T c,∞ ≤ cσ

√
n

√
pη

.

Therefore, with probability at least 1− η,

λ >
∥Ψ⊤

T cz − Ψ⊤
T cΨT (Ψ

⊤
T ΨT )

−1Ψ⊤
T z∥T c,∞

pδ
.

The remaining follows Lemma 1. This proves the desired result.


