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1 Proof of Technical Lemmas

This section is devoted to proving several technical lemmas used in the paper.

1.1 Proof of Lemma 1

We need the following proposition which is almost standard in compressive sens-
ing.

Proposition 1. Let T C G be a subset of the groups. If the optimal solution

1
(3% = arg min 2—||z — @B+ \|Bllg2  subject to Bre =0
B p
obeying H%!I';c (2 =B |lre,0c0 < A, then any optimal solution
. 1 )
B =argmin ||z — ¥B|" + Al B2
B8 p

must also satisfy Bre = 0.

Proof. Let us express ,é = (3* + h. Some algebraic manipulations show that
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where the “>” follows from the simple inequality ||a@ + b|| > ||a|| + (a,b)/| a],
the “=" follows from the optimality conditions showing that Vg € T, %Wg—r (z —
U3*) = Asgn(B;). Assume that 39 € T, hy # 0. Since by assumption Vg € T,
||%5PQT (z —¥B*)|| < A, from the preceding inequality we have

1 5 A 1 . .
—llz—@B[° + MBllc.2 > Iz — ¥B|I* + AB*|lc.2,
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which contradicts the optimality of B Therefore, we have hpe = 0, which proves
the claim. 0

Proof (of Lemma 1). Part (a): Let us consider a solution 3* to
1
mﬁin %Hz —@B|2 + \||Bllgz subject to Bre = 0.
The optimality conditions show that
1 T * *
];q’T (z —¥rB7) = Asgn(Br),

which implies
Bt = (W7 ¥r) ' (P7 = — Apsgn(Br))- (1)

The remaining task is to check that || %'I/;c (2 =¥B")||1e,00 < A for the selection
of A in the lemma and then apply Proposition 1. Indeed, Vg € T,
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where the “<” uses (1) and triangle inequality, and the “<” follows the condition
on \. This proves part (a).
Part (b): The optimality condition of 3 is

%W;(z — WrBr) = Asgn(Br).

After some algebraic manipulations we obtain
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This completes the proof. O
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1.2 Proof of Lemma 2

We need the following proposition which gives a concentration bound on the
element-wise infinity norm of a random matrix.

Proposition 2. Let A = (a;;) € R™*" is a random matrices whose entries has
variance no larger than o?. Then we have

IA—E[A]]... <o/
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holds with probability at least 1 — 1.

Proof. From Chebyshev’s inequality we get that
Ui
P (lai; — Eaij)| = vVmno//n) < oo

By union of bound we get
P (oo - Blag)| > VAo /i) <.
[N
This proves the claim.

Proof (of Lemma 2). Since ||%(!P;WT)_1||T700 < [ holds with high probability
and the elements of & are bounded, we have that the entries of (¥ @)~ 1@ ¥
have variance o(1/p). From Proposition 2 we get that
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holds with probability at least 1 — 7. Therefore, with high probability
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where the last inequality follows when p is sufficiently large. Next, we show that
with high probability

Ao 18z = O (B ) N 2
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Indeed, since z = W Br + €, we have that
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Since I — ¥r (W, ¥r) W] is a projection matrix, we get that the rows of the
matrix ¥, (I —%r (] ¥r)~1¥]) lie within a bounded ball. Also, it is easy to see
that € and W\ (I — ¥r (¥} ¥r) @) are uncorrelated, and thus E[%!PQTC (I -
Ur (W] Wr)~ Wl )e] = 0. Therefore, from Proposition 2 we know that with
probability at least 1 — 7,
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Therefore, with probability at least 1 — n,
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The remaining follows Lemma 1. This proves the desired result.



