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1. We discuss the mapping between the error-ratio measure computed with the nonblind
deblurring algorithm of Levin et al. [11] and the error-ratio measure computed with the
nonblind-deblurring method of Zoran and Weiss [22].

2. We explain why down-sampling an image using a sinc kernel has an effect of aliasing-
aware sharpening.

1 Mapping Between Different Types of Error Ratios

The error-ratio measure r (Eq. (15) in the paper), which is standardly used to quan-
tify the performance of blind-deblurring methods, depends on the type of non-blind
deblurring algorithm used for the final deblurring stage. The error-ratios reported in our
paper (and also used in [18]) were computed with the current state-of-the-art non-blind
deblurring method of Zoran and Weiss [22]. Previous studies (e.g., [12,13]) reported
error-ratios computed with the non-blind deblurring method of Levin et al. [11] (the
state-of-the-art at that time). In the figure below we re-plot the cumulative distribution
of error-ratios, but this time computed with [11]. As can be seen, the absolute error-
ratio values are different than those in the corresponding graph (Fig. 5 in the paper) of
error-ratios computed with [22]. Nonetheless, the two graphs reflect the same relative
behavior of all the methods.

In the table below we report the average performance, worst-case performance and
success rate of all algorithms, this time using error-ratios computed with the non-blind
deblurring of [11]. We note that for this setting, the blind deblurring paper of Levin et
al. [13] reported a threshold of 3 between good and bad visual results. Consequently,
we regard success rate in this context as the percent of images with error-ratio smaller
than 3. As in the corresponding table (Table 1 in the paper) of error-ratios computed
with the non-blind deblurring of [22], this table shows that our method and the method
of Sun et al. [18] outperform all other methods in all three categories. The average
performance of our method is close to that of Sun et al. [18], while our worst-case
performance is significantly better. Note that also when using this measure, only three
methods (the same three) attain an average error ratio smaller than 3: Our method, Sun
et al. [18], Xu and Jia [19].

The figure below further shows a scatter-plot of both types of error-ratios. Each
point in this plot corresponds to a kernel produced by one of the 7 tested blind-deblurring
methods on one of the 640 blurry images in the database (once used with the non-blind
deblurring of [22] and once with the non-blind deblurring of [11]). In other words, 4480
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Figure: Cumulative distribution of error ratios (similar to Fig. 5 in the paper), but this time the
error-ratios are computed with the nonblind deblurring algorithm of Levin et al. [11].

Table: Quantitative comparison of all methods over the entire database (640 blurry images),
based on error-ratios computed with [11]

Average performance Worst-case performance|  Success rate
(mean error ratio) (highest error-ratio) (percent of images
with error ratio < 3)
Our 1.9 54 93.3%
Sun et al. [18] 1.8 17.2 93.1%
Xu & Jia [19] 2.7 60.4 84.5%
Levin et al. [13] 4.1 26.5 46.7%
Cho & Lee [1] 6.5 107.9 64.1%
Krishnan ef al. [10] 8.8 167.5 20.5%
Cho et al. [2] 19.7 145.9 23.8%

points (640 x 7). This figure indicates that there is very strong correlation between
the error-ratios computed with [22] and those computed with [11]. The best linear fit
(shown in red) suggests that an error ratio of 3 with [11] corresponds to an error-ratio of
approximately 5 with [22]. This further supports our visual observations that an error-
ratio of approximately 5 with [22] corresponds to the threshold between good and bad
visual results.

2 Aliasing-Aware Sharpening by a Factor of o

For simplicity, we focus on 1D signals. The extension to 2D is trivial. Suppose that the
continuous-space scene is convolved with a continuous-space kernel k() and sampled
at integer locations to yield the discrete-space blurry image! y[n]. Let f(&) be a small
pattern in the scene that recurs elsewhere a-times larger as f(£/«) for some factor

' We use parentheses for continuous-space signals and square brackets for discrete-space sig-
nals.
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Figure: Error ratios computed with the nonblind deblurring algorithm Zoran and Weiss [22]
vs. error ratios computed with the nonblind deblurring algorithm of Levin et al. [11].

« > 1. These two regions appear in the image as two patches:
aln] = [ FOkn - )i, 1)
rlnl = [ $6/akin - . @

We assume that k(€) is bandlimited to 7, so that no aliasing occurs when sampling the
continuous scene (i.e., we assume the blurry input image is aliasing free). This implies
that the discrete-space Fourier transforms (DSFTs) of g[n] and 7[n] are given by?

Q (ei“) =FwK(w), —-m<w<mw 3)

R(eY) =aF(aw)K(w), -m<w<m (€]
where F'(w) and K (w) are the continuous-space Fourier transforms (CSFTs) of the
pattern f(&) and the kernel k(&), respectively.

Consider the following a-times coarser version of r[n|, which we obtain by re-
sampling 7[n] on the grid {an},cz with an ideal sinc kernel:

r®[n] = Zr[m%sinc (m“]’) : )

m

As we show below (see the subsection on “Sinc Re-Sampling”), the DSFT of r*[n] is
given by

. 1 .
R” (ez‘”) =—R (e’“’/“) , —nm<w<m. 6)
«
2 We use the argument e in DSFTs as a reminder that they are 27-periodic. Furthermore, we

always specify the contents of DSFTs only for w € [—m,]. Values outside this range are
obtained by a 27-periodic extension.
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Substituting (4) into (6), we have that
R* (e") = F(w)K(w/a), —-m<w<m. @)

Thus, 7[n| corresponds to samples of the continuous pattern f(§), after it has been
convolved with K (w/«) rect(w), where rect(w) = 1 for w < m, and is zero elsewhere
(the CSFT of sinc(£)). In other words, r*[n] is exactly the aliasing-aware a-times
sharper version of q[n]. This is visualized in the figure below.

Q) = F(w)K (w) R(e™) = aF(aw)K (w) R*(e™) = (w/a)

| (w/a)rect(w)

Figure: Formation of the discrete-space Fourier transforms of the patches q[n), r[n], and
r%[n], from the continuous-space Fourier transforms of f (&) and k(§). The patches r*[n] and
q[n] correspond to samples of the same continuous-space structure f (&), but filtered with differ-
ent kernels. The patch ¢[n] is associated with the blur K (w), while the patch »*[n] is associated
with the aliasing-aware blur K (w/a) rect(w).

2.1 Sinc Re-Sampling
To prove (6), note that we can write the sinc resampling formula (5) as

r*[n] = 7(na), (8)
where 7(£) is the continuous-space interpolated signal

7€) :Zr[n];sinc(g;n>. ©)

n

Now, the CSFT of 7(¢) is given by

Rlw) = / (Zﬂ:r[n]i sinc (t”)) =it ge
[ () e
Z ] rect (aw)e™n

= rect(aw) Z r[n]e”n

n

= rect(aw)R (¢"), (10)
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where R () is the DSFT of r[n]. Since R(w) is bandlimited to 7/c, sampling it on
the grid {an}, ¢z introduces no aliasing. Therefore, according to the Shannon Sampling
Theorem, the DSFT of r*[n] is given by

Ry = 1R (f) _lp (aiw/a) . —r<w<m, (11)

« (0% (&%

proving (6).



