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1 Introduction

This document serves as a supplementary document for the submission. It illus-
trates the details of the formulation derivation.

2 Formulation Derivation for Feature Disentanling
Machine (FDM)

2.1 Formulation for Feature Disentangling Machine

To simplify the discussion, we only discuss an MTL expression recognition prob-
lem considering two expressions, denoted as E1 and E2, at the same time. Then,

each image sample can be represented by a triplet
{

xi, y
E1

i , y
E2

i

}

, i = 1, · · · , N

with two expression labels. Specifically, if one of the target expressions, e.g., E1,

is activated in the sample, then y
E1

i = 1 and y
E2

i = −1, and vice versa; while if

neither E1 nor E2 is activated, both the expression labels are set to -1. y
E1

i and

y
E2

i cannot be 1 both since for each image there is one expression label.

In order to select expression-specific features, two expression-specific feature

selection vectors denoted as d
E1

and d
E2

are introduced for tasks E1 and E2,

respectively. In addition, a common feature selection vector denoted as d
Ec

is
used to select common features that are effective and shared in recognizing all
expressions.

Therefore, the objective function in proposed Feature Disentangling Machine
can be extended to recognizing both expressions simultaneously in an MTL
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framework as follows:

min
{d

E1,d
E2,d

Ec∈D}

min
{w

E1,w
E2,ǫ

E1,ǫ
E2,ρ1,ρ2}

1

2

(

‖w
E1

‖22+‖w
E2

‖22

)

+
γ

2

N
∑

i=1

[

(ǫi
E1

)2+(ǫi
E2

)2
]

−(ρ1+ρ2)

s.t. y
E1

i (w
E1

)
T
[

xi ◦
(

d
E1

+ d
Ec

)]

≥ ρ1 − ǫ
E1

i , i = 1, · · · , N,

y
E2

i (w
E2

)
T
[

xi ◦
(

d
E2

+ d
Ec

)]

≥ ρ2 − ǫ
E2

i , i = 1, · · · , N.

m
∑

j=1

d
E1

j ≤ τ1

m
∑

j=1

d
E2

j ≤ τ2

m
∑

j=1

d
Ec

j ≤ τc d
E1

j , d
E2

j , d
Ec

j ∈ {0, 1}

d
E1

j + d
E2

j + d
Ec

j ≤ 1 j = 1, · · · ,m.

(1)

where the sparsity of features is controlled in the three feature selection vectors

(i.e., d
E1

, d
E2

, and d
Ec

) by three parameters τ1, τ2, and τc.

In the subsequent discussion, we will present the details of the algorithm to
solve the FDM.

2.2 Algorithm for Solving Feature Disentangling Machine

First we transform the inner minimization problem into the dual of SVM by
following procedures:

L
{dE1 ,dE2 ,d

Ec }
(wE1 ,wE2 , ǫE1 , ǫE2 ,α,β)

=
1

2

(

‖w
E1

‖2
2
+ ‖w

E2

‖2
2

)

+
γ

2

[

N
∑

i=1

(ǫ
E1

i )2 +

N
∑

i=1

(ǫ
E2

i )2

]

− (ρ1 + ρ2)

−
∑

i

αi

{

y
E1

i (w
E1

)
T
[

(d
E1

+ d
Ec

) ◦ xi

]

+ ǫ
E1

i − ρ1

}

−
∑

i

βi

{

y
E2

i (w
E2

)
T
[

(d
E2

+ d
Ec

) ◦ xi

]

+ ǫ
E2

i − ρ2

}

(2)

Take the partial derivative of L{dE1 ,dE2 ,dEc}(w
E1

,w
E2

, ǫ
E1

, ǫ
E2

,α,β) w.r.t

w
E1

, w
E2

, ǫ
E1

, ǫ
E2

, ρ1, ρ2 and set the values to 0. We can have
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w
E1

=
N
∑

i=1

αiy
E1

i

[

(d
E1

+ d
Ec

) ◦ xi

]

;

w
E2

=

N
∑

i=1

βiy
E2

i

[

(d
E2

+ d
Ec

) ◦ xi

]

;

γǫ
E1

i = αi

γǫ
E2

i = βi

N
∑

i=1

αi = 1

N
∑

i=1

βi = 1

i = 1, · · · , N

(3)

Substituting Eq. 3 to Eq. 2 (the original Lagrangian function), we have the
following formulation:

L
{d

E1 ,d
E2 ,d

Ec }
(α,β) =

−
1

2

∥

∥

∥

∥

∥

∑

i

αiy
E1

i

[

(d
E1

+ d
Ec

) ◦ xi

]

∥

∥

∥

∥

∥

2

−
1

2

∥

∥

∥

∥

∥

∑

i

βiy
E2

i

[

(d
E2

+ d
Ec

) ◦ xi

]

∥

∥

∥

∥

∥

2

−
1

2γ
αTα−

1

2γ
βTβ

(4)

Consequently the original inner problem (Eq. 1) is transformed into its dual
formulation, in which the solution can be found by solving the corresponding
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dual problem as:

min
{d

E1,d
E2,d

Ec }

max
α,β

L
{d

E1,d
E2,d

Ec }
(α,β) =

min
{d

E1,d
E2,d

Ec }

max
α,β

−
1

2

∥

∥

∥

∥

∥

∑

i

αiy
E1

i

[(

d
E1

+ d
Ec

)

◦ xi

]

∥

∥

∥

∥

∥

2

−
1

2γ
αTα

−
1

2

∥

∥

∥

∥

∥

∑

i

βiy
E2

i

[(

d
E2

+ d
Ec

)

◦ xi

]

∥

∥

∥

∥

∥

2

−
1

2γ
βTβ

s.t.

N
∑

i=1

αi = 1,

N
∑

i=1

βi = 1, αi > 0, βi > 0, for i = 1, · · · , N,

{dE1 ,dE2 ,dEc} ∈ D,

where D = {{d
E1

,d
E2

,d
Ec

}|

m
∑

j=1

d
E1

j ≤ τ1,

m
∑

j=1

d
E2

j ≤ τ2,

m
∑

j=1

d
Ec

j ≤ τc,

d
E1

j + d
E2

j + d
Ec

j ≤ 1, d
E1

j , d
E2

j , d
Ec

j ∈ {0, 1}, for j = 1, · · · ,m}

(5)

α and β are dual variable vectors for the inequality constraints in the inner
minimization problem (Eq. 1).

The saddle point problem (5) can be lower bounded by:

max
α,β

min
{d

E1,d
E2,d

Ec }

L
{d

E1,d
E2,d

Ec }
(α,β) =

max
α,β

min
{d

E1,d
E2,d

Ec }

−
1

2

∥

∥

∥

∥

∥

∑

i

αiy
E1

i

[(

d
E1

+ d
Ec

)

◦ xi

]

∥

∥

∥

∥

∥

2

−
1

2γ
αTα

−
1

2

∥

∥

∥

∥

∥

∑

i

βiy
E2

i

[(

d
E2

+ d
Ec

)

◦ xi

]

∥

∥

∥

∥

∥

2

−
1

2γ
β
T
β

s.t.

n
∑

i=1

αi = 1,

n
∑

i=1

βi = 1, αi > 0, βi > 0, for i = 1, ..., N, {dE1 ,dE2 ,dEc} ∈ D

(6)

By bringing an additional variable θ, the above optimization problem (Eq. 6)
becomes:

max
θ,α,β

−θ : θ ≥ −L
{d

E1

t
,d

E2

t
,d

Ec

t
}
(α,β), ∀{d

E1

t ,d
E2

t ,d
Ec

t } ∈ D (7)

which is a convex Quadratically Constrained Quadratic Programming (QCQP)
problem.

Define µt ≥ 0 as the dual variable for each constraint in Eq. 7, the Lagrangian
of Eq. 7 can be written as:

S(θ,µ) = −θ +
∑

t

µt

[

θ + L
{d

E1

t
,d

E2

t
,d

Ec

t
}
(α,β)

]

(8)
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Setting derivative of Eq. 8 w.r.t θ to zero, we have:

∑

t

µt = 1 (9)

Define M = {µ|
∑

t µt = 1, µt ≥ 0} and let M be the domain of µ, the La-
grangian S(θ,µ) (Eq. 8) can be rewritten as:

max
α,β

min
µ∈M

S(θ,µ) = max
α,β

min
µ∈M

∑

t

µtL{d
E1

t
,d

E2

t
,d

Ec

t
}
(α,β) (10)

Since the objective function
∑

t µtL{d
E1

t
,d

E2

t
,d

Ec

t
}
(α,β) is concave in α and β

and is convex in µ, then

max
α,β

min
µ∈M

∑

t

µtL{d
E1

t
,d

E2

t
,d

Ec

t
}
(α,β)

= min
µ∈M

max
α,β

−
1

2

(

α ◦ yE1

)T

(

∑

t

µtX
E1

t XE1

t

T
+

1

γ
I

)

(

α ◦ yE1

)

−
1

2

(

β ◦ yE2

)T

(

∑

t

µtX
E2

t XE2

t

T
+

1

γ
I

)

(

β ◦ yE2

)

where XE1

t =
[

x1 ◦
(

dE1

t + dEc

t

)

, · · · ,xN ◦
(

dE1

t + dEc

t

)]
T

XE2

t =
[

x1 ◦
(

dE2

t + dEc

t

)

, ...,xN ◦
(

dE2

t + dEc

t

)]
T

M = {µ|
∑

µt = 1, µt ≥ 0}; {dE1

t ,dE2

t ,dEc

t } ∈ D

(11)

where I represents an identity matrix.
The details to solve the Eq. 11 can be found in the paper submitted.
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