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1 Overview of the supplementary material

This supplementary material is organised into two parts. In Section 2 we provide the proofs of the lemma
and the theorem presented in Section 3.3 of the paper, while Section 3 presents some examples of image
segmentation.

2 Theoretical analysis

This section presents the proofs of Lemma 1 and Theorem 1 from Section 3.3 of the paper. Lemma 1 is
proved in Section 2.1 and Theorem 1 is proved in Section 2.2.

2.1 Generalization bound per region Cj

First, we recall our optimization problem considered in each region Cj :

argmin
Mj�0

FTj
(Mj) (1)

where

FTj
(Mj) = ε̂Tj

(Mj) + λj‖Mj‖2F ,

ε̂Tj
(Mj) =

1

nj

∑
(x,x′,∆E00)∈Tj

l(Mj, (x,x
′, ∆E00)),

and l(Mj, (x,x
′, ∆E00)) =

∣∣∣(x− x′)TMj(x− x′
)
−∆E00 (x,x

′)
2
∣∣∣ .

Here ε̂Tj
(Mj) stands for the empirical risk of a matrix Mj over a training set Tj , of size nj , drawn from

an unknown distribution P (Cj). The true risk εP (Cj)(Mj) is defined as follows:

εP (Cj)(Mj) = E(x,x′,∆E00)∼P (Cj)

[
l(Mj, (x,x

′, ∆E00))
]

.

In this section, T ij denotes the training set obtained from Tj by replacing the ith example of Tj by a
new independent one. Moreover, we have ∆max = max0≤j≤K

{
max(x,x′,∆E00)∼P (Cj) {∆E00 (x,x

′)}
}

and Dj = max(x,x′,∆E00)∼P (Cj) (‖x− x′‖) ≤ 11.
To derive such a generalization bound, we need to consider loss functions that fulfill two properties:

k-lipschitz continuity (Definition A) and (σ,m)-admissibility (Definition B).

1 We assume the examples to be normalized such that ‖x‖ ≤ 1.
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Definition A (k-lipschitz continuity) A loss function l(Mj, (x,x
′, ∆E00)) is k-lipschitz w.r.t. its first ar-

gument if, for any matrices Mj, M
′
j and any example (x,x′, ∆E00), there exists k ≥ 0 such that:∣∣l(Mj, (x,x

′, ∆E00))− l(M′j, (x,x′, ∆E00))
∣∣ ≤ k‖Mj −M′j‖F .

This k-lipschitz property ensures that the loss deviation does not exceed the deviation between matrices
Mj and M′j with respect to a positive constant k.

Definition B ((σ,m)-admissibility) A loss function l(Mj, (x,x
′, ∆E00)) is (σ,m)-admissible, w.r.t. Mj,

if it is convex w.r.t. its first argument and for two examples (x,x′, ∆E00 (x,x
′)) and (t, t′, ∆E00 (t, t

′)),
we have:∣∣l(Mj, (x,x

′, ∆E00 (x,x
′)))− l(Mj, (t, t

′, ∆E00 (t, t
′)))
∣∣ ≤ σ |∆E00 (x,x

′)−∆E00 (t, t
′)|+m.

Definition B bounds the difference between the losses of two examples by a value only related to the
∆E00 values plus a constant independent from Mj. Let us introduce a last concept which is required to
derive a generalization bound.

Definition C (Uniform stability) In a region Cj , a learning algorithm has a uniform stability in Knj
, with

K ≥ 0 a constant, if ∀i,

sup
(x,x′,∆E00)∼P (Cj)

∣∣l(Mj, (x,x
′, ∆E00))− l(Mi

j, (x,x
′, ∆E00))

∣∣≤ K
nj

,

where Mj is the matrix learned on the training set Tj and Mi
j is the matrix learned on the training set T ij .

The uniform stability guarantees that the solutions learned with two close training sets are not significantly
different and that the variation converges in O(1/nj).

To prove Lemma 1 of the paper, we need several additional lemmas and one more theorem which are
not presented in the paper. First we show that our loss is k-lipschitz continuous, (σ,m)-admissible and
that our algorithm respects the property of uniform stability. For the sake of readability, we number these
lemmas and this theorem with capital letters.

Lemma A (k-lipschitz continuity) Let Mj and M′j be two matrices for a region Cj and (x,x′, ∆E00) be
an example. Our loss l(Mj, (x,x

′, ∆E00)) is k-lipschitz with k = D2
j .

Proof.∣∣l(Mj, (x,x
′, ∆E00))− l(M′j, (x,x′, ∆E00))

∣∣
=
∣∣∣∣∣∣(x− x′)TMj(x− x′

)
−∆E00 (x,x

′)
2
∣∣∣− ∣∣∣(x− x′)TM′j(x− x′

)
−∆E00 (x,x

′)
2
∣∣∣∣∣∣

≤
∣∣(x− x′)TMj(x− x′

)
−
(
x− x′)TM′j(x− x′

)∣∣ (2.1)

=
∣∣(x− x′)T

(
Mj −M′j

)
(x− x′

)∣∣
≤ ‖x− x′‖‖Mj −M′j‖F‖x− x′‖ (2.2)

≤ D2
j‖Mj −M′j‖F (2.3)

Inequality (2.1) is due to the triangle inequality, (2.2) is obtained by application of the Cauchy-Schwarz
inequality and some classical norm properties. (2.3) comes from the definition ofDj . Setting k = D2

j gives
the Lemma.

We now provide a lemma that will help to prove Lemma C on the (σ,m)-admissibility of our loss
function.

Lemma B Let Mj be an optimal solution of Problem (1), we have

‖Mj‖ ≤
∆max√
λj

.
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Proof. Since Mj is an optimal solution of Problem (1), we have then:

FTj
(Mj) ≤ FTj

(0)

⇔ 1

nj

∑
(x,x′,∆E00)∈Tj

l(Mj, (x,x
′, ∆E00)) + λj‖Mj‖2F ≤

1

nj

∑
(x,x′,∆E00)∈Tj

l(0, (x,x′, ∆E00)) + λj‖0‖2F

⇒ λj‖Mj‖2F ≤
1

nj

∑
(x,x′,∆E00)∈Tj

l(0, (x,x′, ∆E00)) (3.1)

⇒ λj‖Mj‖2F ≤ ∆2
max (3.2)

⇒ ‖Mj‖F ≤
∆max√
λj

.

Inequality (3.1) comes from the fact that our loss is always positive and that ‖0‖F = 0. (3.2) is obtained
by noting that l(0, (x,x′, ∆E00)) ≤ ∆2

max.

Lemma C ((σ,m)-admissibility) Let (x,x′, ∆E00 (x,x
′)) and (t, t′, ∆E00 (t, t

′)) be two examples and
Mj be the optimal solution of Problem (1). The loss l(Mj, (x,x

′, ∆E00)) is (σ,m)-admissible with σ =

2∆max and m =
2D2

j∆max√
λj

.

Proof.∣∣l(Mj, (x,x
′, ∆E00 (x,x

′)))− l(Mj, (t, t
′, ∆E00 (t, t

′)))
∣∣

=
∣∣∣∣∣∣(x− x′)TMj(x− x′

)
−∆E00 (x,x

′)
2
∣∣∣− ∣∣∣(t− t′)TMj(t− t′

)
−∆E00 (t, t

′)
2
∣∣∣∣∣∣

≤
∣∣(x− x′)TMj(x− x′

)
−
(
t− t′)TMj(t− t′

)∣∣+ ∣∣∣∆E00 (t, t
′)
2 −∆E00 (x,x

′)
2
∣∣∣ (4.1)

≤
∣∣(x− x′)TMj(x− x′

)∣∣+ ∣∣(t− t′)TMj(t− t′
)∣∣+ ∣∣∣∆E00 (t, t

′)
2 −∆E00 (x,x

′)
2
∣∣∣ (4.2)

≤ 2 max
(x,x′)

{∣∣(x− x′)TMj(x− x′
)∣∣}+ ∣∣∣∆E00 (t, t

′)
2 −∆E00 (x,x

′)
2
∣∣∣

≤
2D2

j∆max√
λj

+
∣∣∣∆E00 (t, t

′)
2 −∆E00 (x,x

′)
2
∣∣∣ (4.3)

≤
2D2

j∆max√
λj

+ |∆E00 (t, t
′) +∆E00 (x,x

′)| |∆E00 (t, t
′)−∆E00 (x,x

′)|

≤
2D2

j∆max√
λj

+ 2∆max |∆E00 (t, t
′)−∆E00 (x,x

′)| .

Inequalities (4.1) and (4.2) are obtained by applying the triangle inequality respectively twice and once,
(4.3) comes from the fact that ‖Mj‖F ≤

∆max√
λj

(Lemma B) and that ‖x − x′‖ ≤ Dj . Setting σ = 2∆max

and m =
2D2

j∆max√
λj

gives the Lemma.

We will now prove the uniform stability of our algorithm but before to present this proof, we need the
following Lemma.

Lemma D Let FTj
() and FT i

j
() be the functions to optimize, Mj and Mi

j their corresponding minimizers,

and λj the regularization parameter used in our algorithm. Let ∆Mj = Mj −Mi
j, then, we have, for any

t ∈ [0, 1],

‖Mj‖2F − ‖Mj − t∆Mj‖2F + ‖Mi
j‖2F − ‖Mi

j + t∆Mj‖2F ≤
2kt

λjnj
‖∆Mj‖F . (5)
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Proof. This proof is similar to the proof of Lemma 20 in [1] which we recall for the sake of completeness.
ε̂T i

j
() is a convex function, thus, for any t ∈ [0, 1], we can write:

ε̂T i
j
(Mj − t∆Mj)− ε̂T i

j
(Mj) ≤ t

(
ε̂T i

j
(Mi

j)− ε̂T i
j
(Mj)

)
, (6)

ε̂T i
j
(Mi

j + t∆Mj)− ε̂T i
j
(Mi

j) ≤ t
(
ε̂T i

j
(Mj)− ε̂T i

j
(Mi

j)
)

. (7)

By summing inequalities (6) and (7) we obtain

ε̂T i
j
(Mj − t∆Mj)− ε̂T i

j
(Mj) + ε̂T i

j
(Mi

j + t∆Mj)− ε̂T i
j
(Mi

j) ≤ 0. (8)

Since Mj and Mi
j are minimizers of FTj

() and FT i
j
(), we can write:

FTj
(Mj)− FTj

(Mj − t∆Mj) ≤ 0, (9)

FT i
j
(Mi

j)− FT i
j
(Mi

j + t∆Mj) ≤ 0. (10)

By summing inequalities (9) and (10), we obtain

ε̂Tj
(Mj)− ε̂Tj

(Mj − t∆Mj) + λj‖Mj‖2F − λj‖Mj − t∆Mj‖2F+

ε̂T i
j
(Mi

j)− ε̂T i
j
(Mi

j + t∆Mj) + λj‖Mi
j‖2F − λj‖Mi

j + t∆Mj‖2F ≤ 0. (11)

We can now sum inequalities (8) and (11) to obtain

ε̂Tj
(Mj)− ε̂T i

j
(Mj)− ε̂Tj

(Mj − t∆Mj) + ε̂T i
j
(Mj − t∆Mj)+

λj‖Mj‖2F − λj‖Mj − t∆Mj‖2F + λj‖Mi
j‖2F − λj‖Mi

j + t∆Mj‖2F ≤ 0. (12)

From (12), we can write:

λj‖Mj‖2F − λj‖Mj − t∆Mj‖2F + λj‖Mi
j‖2F − λj‖Mi

j + t∆Mj‖2F ≤ B (13)

with

B = ε̂T i
j
(Mj)− ε̂Tj

(Mj) + ε̂Tj
(Mj − t∆Mj)− ε̂T i

j
(Mj − t∆Mj).

We are now looking for a bound on B:

B ≤
∣∣∣ε̂Tj

(Mj − t∆Mj)− ε̂T i
j
(Mj − t∆Mj) + ε̂T i

j
(Mj)− ε̂Tj

(Mj)
∣∣∣

≤ 1

nj

∣∣∣∣∣∣
∑

(x,x′,∆E00)∈Tj

l(Mj − t∆Mj, (x,x
′, ∆E00))−

∑
(t,t′,∆E00)∈T i

j

l(Mj − t∆Mj, (t, t
′, ∆E00)) +

∑
(t,t′,∆E00)∈T i

j

l(Mj, (t, t
′, ∆E00))−

∑
(x,x′,∆E00)∈Tj

l(Mj, (x,x
′, ∆E00))

∣∣∣∣∣∣
=

1

nj

∣∣l(Mj − t∆Mj, (xi,x
′
i, ∆E00))− l(Mj − t∆Mj, (ti, t

′
i, ∆E00)) +

l(Mj, (ti, t
′
i, ∆E00))− l(Mj, (xi,x

′
i, ∆E00))

∣∣ (14.1)

≤ 1

nj

(∣∣l(Mj − t∆Mj, (xi,x
′
i, ∆E00))− l(Mj, (xi,x

′
i, ∆E00))

∣∣ +∣∣l(Mj, (ti, t
′
i, ∆E00))− l(Mj − t∆Mj, (ti, t

′
i, ∆E00))

∣∣) (14.2)

≤ 1

nj

(
k‖Mj − t∆Mj −Mj‖F + k‖Mj −Mj + t∆Mj‖F

)
(14.3)

≤ 2kt

nj
‖∆Mj‖F .
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Equality (14.1) comes from the fact that Tj and T ij only differ by their ith example, inequality (14.2) is due
to the triangle inequality and (14.3) is obtained thanks to the k-lipschitz property of our loss (Lemma A).

Then combining the bound on B with equation (13) and dividing both sides by λj gives the Lemma.

We can now show the uniform stability property of the approach.

Lemma E (Uniform stability) Given a training sample Tj of nj examples drawn i.i.d. from P (Cj), our

algorithm has a uniform stability in Knj
with K =

2D4
j

λj
.

Proof. By setting t = 1
2 in Lemma D, one can obtain for the left hand side:

‖Mj‖2F − ‖Mj −
1

2
∆Mj‖2F + ‖Mi

j‖2F − ‖Mi
j +

1

2
∆Mj‖2F =

1

2
‖∆Mj‖2F

and thus:

1

2
‖∆Mj‖2F ≤

2k 1
2

λjnj
‖∆Mj‖F ,

which implies

‖∆Mj‖F ≤
2k

λjnj
.

Since our loss is k-lipschitz (Lemma A) we have:∣∣l(Mj, (x,x
′, ∆E00))− l(Mi

j, (x,x
′, ∆E00))

∣∣ ≤ k‖∆Mj‖F

≤ 2k2

λjnj
.

In particular,

sup
(x,x′,∆E00)

∣∣l(Mj, (x,x
′, ∆E00))− l(M′j, (x,x′, ∆E00))

∣∣ ≤ 2k2

λjnj
.

By recalling that k = D2
j (Lemma A) and setting K = 2k2

λj
, we get the lemma.

We now recall the McDiarmid inequality [2], used to prove our main theorem.

Theorem A (McDiarmid inequality) Let X1, ..., Xn be n independent random variables taking values in
X and let Z = f(X1, ..., Xn). If for each 1 ≤ i ≤ n, there exists a constant ci such that

sup
x1,...,xn,x′

i∈X
|f(x1, ..., xn)− f(x1, ..., x′i, ..., xn)| ≤ ci,∀1 ≤ i ≤ n,

then for any ε > 0,Pr [|Z − E [Z]| ≥ ε] ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
.

Using Lemma E about the stability of our algorithm and the McDiarmid inequality we can derive our
generalization bound. For this purpose, we replace Z by RTj

= εP (Cj)(Mj)− ε̂Tj
(Mj) in Theorem A and

we need to bound ETj

[
RTj

]
and

∣∣∣RTj
−RT i

j

∣∣∣, which is done in the following two lemmas.

Lemma F For any learning method of estimation error RTj
and satisfying a uniform stability in Knj

, we
have

ETj

[
RTj

]
≤ K
nj

.
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Proof.

ETj

[
RTj

]
≤ ETj

[
E(x,x′,∆E00)

[
l(Mj, (x,x

′, ∆E00))
]
− ε̂Tj

(Mj)
]

≤ ETj ,(x,x′,∆E00)


∣∣∣∣∣∣∣l(Mj, (x,x

′, ∆E00))−
1

nj

∑
(xk,x′

k,∆E00)∈Tj

l(Mj, (xk,x
′
k, ∆E00))

∣∣∣∣∣∣∣


≤ ETj ,(x,x′,∆E00)


∣∣∣∣∣∣∣
1

nj

∑
(xk,x′

k,∆E00)∈Tj

(
l(Mj, (x,x

′, ∆E00))− l(Mj, (xk,x
′
k, ∆E00))

)∣∣∣∣∣∣∣


≤ ETj ,(x,x′,∆E00)


∣∣∣∣∣∣∣
1

nj

∑
(xk,x′

k,∆E00)∈Tj

(
l(Mk

j , (xk,x
′
k, ∆E00))− l(Mj, (xk,x

′
k, ∆E00))

)∣∣∣∣∣∣∣


(15.1)

≤ K
nj

. (15.2)

Inequality (15.1) comes from the fact that Tj and (x,x′, ∆E00) are drawn i.i.d. from the distribution P (Cj)
and thus we do not change the expected value by replacing one example with another, (15.2) is obtained by
applying triangle inequality followed by the property of uniform stability (Lemma E).

Lemma G For any matrix Mj learned by our algorithm using nj training examples, and any loss function
l satisfying the (σ,m)-admissibility, we have∣∣∣RTj

−RTk
j

∣∣∣ ≤ 2K + (∆maxσ +m)

nj
.

Proof.∣∣∣RTj
−RT i

j

∣∣∣ = ∣∣∣εP (Cj)(Mj)− ε̂Tj
(Mj)−

(
εP (Cj)(M

i
j)− ε̂T i

j
(Mi

j)
)∣∣∣

=
∣∣∣εP (Cj)(Mj)− ε̂Tj

(Mj)− εP (Cj)(M
i
j) + ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j) + ε̂Tj
(Mi

j)
∣∣∣

≤
∣∣εP (Cj)(Mj)− εP (Cj)(M

i
j)
∣∣+ ∣∣∣ε̂Tj

(Mi
j)− ε̂Tj

(Mj)
∣∣∣+ ∣∣∣ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣ (16.1)

≤ E(x,x′,∆E00)

[∣∣l(Mj, (x,x
′, ∆E00))− l(Mi

j, (x,x
′, ∆E00))

∣∣]+∣∣∣ε̂Tj
(Mi

j)− ε̂Tj
(Mj)

∣∣∣+ ∣∣∣ε̂T i
j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣ (16.2)

≤ K
nj

+
∣∣∣ε̂Tj

(Mi
j)− ε̂Tj

(Mj)
∣∣∣+ ∣∣∣ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣ (16.3)

≤ K
nj

+
1

nj

∑
(x,x′,∆E00)∈Tj

∣∣l(Mi
j, (x,x

′, ∆E00))− l(Mj, (x,x
′, ∆E00))

∣∣+
∣∣∣ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣

≤ K
nj

+
K
nj

+
∣∣∣ε̂T i

j
(Mi

j)− ε̂Tj
(Mi

j)
∣∣∣ (16.4)

=
2K
nj

+
1

nj

∣∣l(Mi
j, (ti, t

′
i, ∆E00))− l(Mi

j, (xi,x
′
i, ∆E00))

∣∣ (16.5)

≤ 2K
nj

+
1

nj
(σ |∆E00 (ti, t

′
i)−∆E00 (xi,x

′
i)|+m) (16.6)

≤ 2K + (∆maxσ +m)

nj
. (16.7)
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Inequalities (16.1) and (16.2) are due to the triangle inequality. (16.3) and (16.4) come from the uniform
stability (Lemma E). (16.5) comes from the fact that Tj and T ij only differ by their ith example. (16.6) comes
from the (σ,m)-admissibility of our loss (Lemma C). Noting that |∆E00 (ti, t

′
i)−∆E00 (xi,x

′
i)| ≤ ∆max

gives inequality (16.7).

Lemma 1 (Generalization bound) With probability 1 − δ, for any matrix Mj related to a region Cj ,
0 ≤ j ≤ K, learned with Algorithm 1, we have:

εP (Cj)(Mj)≤ ε̂Tj
(Mj) +

2D4
j

λjnj
+

(
4D4

j

λj
+∆max(

2D2
j√
λj

+2∆max)

)√
ln( 2δ )

2nj
.

Proof. Using the McDiarmid inequality (Theorem A) and Lemma G we can write:

Pr
[∣∣∣RTj

− ETj

[
RTj

]∣∣∣ ≥ ε] ≤ 2 exp

− 2ε2∑n
j=1

(
2K+(5σ+m)

nj

)2


≤ 2 exp

(
− 2ε2

1
nj

(2K + (5σ +m))
2

)
.

Then, by setting:

δ = 2 exp

(
− 2ε2

1
nj

(2K + (5σ +m))
2

)

we obtain:

ε = (2K + (∆maxσ +m))

√
ln
(
2
δ

)
2nj

and thus:

Pr
[∣∣∣RTj

− ETj

[
RTj

]∣∣∣ < ε
]
> 1− δ.

Then, with probability 1− δ:

RTj
< ETj

[
RTj

]
+ ε

⇔ εP (Cj)(Mj)− ε̂Tj
(Mj) < ETj

[
RTj

]
+ ε

⇔ εP (Cj)(Mj) < ε̂Tj
(Mj) +

K
nj

+ (2K + (∆maxσ +m))

√
ln
(
2
δ

)
2nj

.

The last equation is obtained by using Lemma F and replacing K, σ and m by their respective values gives
the lemma.

We showed that our approach is locally consistent. In the next section, we show that our algorithm
globally converges in O(1/

√
n).

2.2 Generalization bound for Algorithm 1

We consider the partitionC0, C1, . . . , CK over pairs of examples considered by Algorithm 1. We first recall
the concentration inequality that will help us to derive the bound.
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Proposition 1 ([3]). Let (n0, n1, . . . , nK) an IID multinomial random variable with parameters
n =

∑K
j=0 nj and (P (C0), P (C1), . . . , P (CK)). By the Breteganolle-Huber-Carol inequality we have:

Pr
{∑K

j=0

∣∣nj

n − P (Cj)
∣∣ ≥ η} ≤ 2K exp

(
−nη2

2

)
, hence with probability at least 1− δ,

K∑
j=0

∣∣∣nj
n
− P (Cj)

∣∣∣ ≤√2K ln 2 + 2 ln(1/δ)

n
. (17)

We recall the true and empirical risks. Let M = {M0,M1, . . . ,MK} be the K+1 matrices learned
by our algorithm. The true error associated to M is defined as ε(M) =

∑K
j=0 εP (Cj)(Mj)P (Cj) where

εP (Cj)(Mj) is the local true risk for Cj . The empirical error over T of size n is defined as ε̂T (M) =
1
n

∑K
j=0 nj ε̂Tj

(Mj) where ε̂Tj
(Mj) is the empirical risk of Tj .

Before proving the main theorem of the paper we introduce an additional lemma showing a bound on
the loss function.

Lemma H Let M = {M0,M1, . . . ,MK} be any set of metrics learned by Algorithm 1 from a data
sample T of n pairs, for any 0 ≤ j ≤ K, we have that for any example (x,x′, ∆E00) ∼ P (Cj):

l(Mj, (x,x
′, ∆E00)) ≤ LB ,

with LB = max{∆max√
λ
, ∆2

max}.

Proof.

l(Mj, (x,x
′, ∆E00)) =

∣∣∣(x− x′)TMj(x− x′
)
−∆E00 (x,x

′)
2
∣∣∣

≤ max
{(

x− x′)TMj(x− x′
)
, ∆E00 (x,x

′)
2
}

(18.1)

≤ max

{
∆max√

λ
,∆E00 (x,x

′)
2
}

(18.2)

≤ max

{
∆max√

λ
,∆2

max

}
. (18.3)

Inequality (18.1) comes from the fact that any matrix Mj is positive semi definite and thus we are taking
the absolute difference of two positive values. Inequality (18.2) is obtained by using the Cauchy-Schwarz
inequality, the Lemma B with λ = min0≤j≤K λj and the inequality ‖x−x′‖ ≤ 1. Inequality (18.3) is due
to the definition of ∆max.

We can now prove the main theorem of the paper.

Theorem 1 Let C0, C1, . . . , CK be the regions considered and M = {M0,M1, . . . ,MK} any set of
metrics learned by Algorithm 1 from a data sample T of n pairs, we have with probability at least 1 − δ
that

ε(M) ≤ε̂T (M) + LB

√
2(K + 1) ln 2 + 2 ln(2/δ)

n
+

2(KD4 + 1)

λn

+

(
4(KD4 + 1)

λ
+∆max(

2(KD2 + 1)√
λ

+ 2(K + 1)∆max)

)√
ln( 4(K+1)

δ )

2n

where D = max1≤j≤K Dj , LB is the bound on the loss function and λ = min0≤j≤K λj is the minimum
regularization parameter among the K + 1 learning problems used in Algorithm 1.

Proof. Let nj be the number points of T that fall into the partition Cj . (n0, n1, . . . , nK) is a IID multino-
mial random variable with parameters n and (P (C0), P (C1), . . . , P (CK)).
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|ε(M)− ε̂T (M)| =
∣∣E(x,x′,∆E00)∼P [l(M, (x,x′, ∆E00))]− ε̂T (M)

∣∣
=

∣∣∣∣∣∣
K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
P (Cj)− ε̂T (M)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
P (Cj)

−
K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n

+

K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n
− ε̂T (M)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
P (Cj)

−
K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n

∣∣∣∣∣∣
+

∣∣∣∣∣∣
K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n
− ε̂T (M)

∣∣∣∣∣∣ (19.1)

≤
K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

∣∣[l(Mj, (x,x
′, ∆E00))

]∣∣ ∣∣∣P (Cj)− nj
n

∣∣∣
+

∣∣∣∣∣∣
K∑
j=0

E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
] nj
n
−

K∑
j=0

nj
n
ε̂Tj

(Mj)

∣∣∣∣∣∣ (19.2)

≤
K∑
j=0

LB

∣∣∣P (Cj)− nj
n

∣∣∣
+

∣∣∣∣∣∣
K∑
j=0

nj
n

(
E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
− ε̂Tj

(Mj)
)∣∣∣∣∣∣ (19.3)

≤ LB

√
2(K + 1) ln 2 + 2 ln(2/δ)

n

+

K∑
j=0

nj
n

∣∣∣E(x,x′,∆E00)∼P |(x,x′,∆E00)∈Cj

[
l(Mj, (x,x

′, ∆E00))
]
− ε̂Tj

(Mj)
∣∣∣ (19.4)

≤ LB

√
2(K + 1) ln 2 + 2 ln(2/δ)

n

+

K∑
j=0

nj
n

 2D4
j

λjnj
+

(
2D4

j

λj
+∆max(

2D2
j√
λj

+ 2∆max)

)√
ln( 4(K+1)

δ )

2nj

 (19.5)

≤ LB

√
2(K + 1) ln 2 + 2 ln(2/δ)

n
+

2(KD4 + 1)

λn

+

(
2(KD4 + 1)

λ
+∆max(

2(KD2 + 1)√
λ

+ 2∆max)

)√
ln( 4(K+1)

δ )

2n
(19.6)
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Inequalities (19.1) and (19.2) are due to the triangle inequality. (19.3) comes from the application of
Lemma H. Inequality (19.4) is obtained by applying Proposition 1 with probability 1 − δ/2. (19.5) is
due to the application of Lemma 1 with probability 1 − δ/(2(K + 1)) for each of the (K + 1) learn-
ing problems. Inequality (19.6) is obtained by cancelling out the nj , noting that √nj ≤

√
n and taking

D = max1≤i≤nDj . Note that D0 = 1 corresponds to the partition used by the global metric.
Eventually by the union bound we obtained the final result with probability 1− δ.

3 Image Segmentation

In this section, we illustrate the application of the color mean-shift algorithm presented in our paper. We
apply color mean-shift on RGB components, on L∗u∗v∗ components and by using our learned distance
directly in the RGB components. The overall quantitative results for the Berkeley dataset are provided in
the paper and we propose to show some qualitative results on this dataset in Figure 1. As explained in the
paper, the number of segments in the resulting images is not a parameter of the algorithm, as a consequence
it is not easy to obtain images with the same number of segments for the three algorithms (RGB, L∗u∗v∗

and Metric learning). Thus, given an image, by playing with the color distance threshold, we have tried to
obtain the same segment numbers as the corresponding ground truth for the three algorithms. However, the
color mean-shift algorithm provides some very small segments, specially for the RGB and L∗u∗v∗ color
spaces. Consequently, for each test, in Figure 1, we have mentioned between brackets, first, the number of
segments, and second, the number of segments whose size is more than 150 pixels. For a fair comparison,
we use this last number as reference for each image, i.e. this number is almost constant and close to the
ground truth for each row.

It is worth mentioning that the ground truth segmentation has always very few segments. Thus, starting
from a large number of small segments, the used algorithm is grouping them by considering their color
differences. Consequently, the used color distance is crucial when we want to obtain small number of
segments as provided by the ground truth. We can see in Figure 1, that when working in the RGB or
L∗u∗v∗ color spaces, some segments that are perceptually different are merged while some other similar
segments are not. Most of the time, the color mean-shift is working well when using our distance. This
point was already checked quantitatively on the whole Berkeley dataset in the paper.
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Fig. 1. Illustration of segmentation provided by the color mean-shift algorithm applied in the RGB components (third
column), on L∗u∗v∗ components (fourth column) and by using our learned distance directly in the RGB components
(fifth column). First column represents the original image and the second one the ground truth.


