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In this additional material we will prove Proposition 3.1 from the main paper.
First, however, we will need to review some concepts from Riemannian geometry.
We refer the reader to [1] for additional details.

1 Additional Notation and Background

Let M be a Riemannian manifold with metric 〈·, ·〉. Let X (M) denote the set of
smooth tangent vector fields on M , i.e., the set of mappings x ∈M 7→ X(x) ∈
TxM . Given a local chart (x1, . . . , xd, . . . , xD) 7→ x ∈M , a vector field X ∈ X (M)
is locally defined as X =

∑
d xd∂d, where ∂d denotes the directional derivative

operator along the i-th coordinate. Given X,Y ∈ X (M), the Lie bracket between
two vector fields is defined (in local coordinates) as the new vector field

[X,Y ] =
∑
d

(X(yd)− Y (xd))∂d ∈ X (M), (1)

where X(f) denotes the result of “applying” X on a smooth function f , i.e., of
computing the directional derivative of f in the direction given by X at each
point of M .

Given the metric, one can obtain the Levi-Civita connection ∇M
X Y , where

X,Y ∈ X (M). By definition, the Levi-Civita connection is the unique affine
symmetric connection compatible with the metric (see [1] for the precise definition
of these properties). Given the Levi-Civita connection, the curvature tensor
R(X,Y )Z is given by

RM (X,Y )Z = ∇M
Y ∇M

X Z −∇M
X∇M

Y Z +∇M
[X,Y ]Z. (2)

The Ricci curvature along a vector field X can be found by contracting the
curvature tensor as follows:

RicM (X,X) =
∑
d

〈RM (X,Ed)X,Ed〉, (3)

where Ed = ∂d in some local coordinate chart. The quadratic form associated
with (3) can be found using the fact that RM and the metric are multilinear in
their arguments, which implies the polarization identity:

RicM (X,Y ) =
1

4

(
RicM (X + Y,X + Y )− RicM (X − Y,X − Y )

)
(4)
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The matrix form of the Ricci curvature (in some local coordinate chart) can be
found by computing the i, j-th element as RicM (Ei, Ej).

We are now ready to prove Proposition 3.1.

2 Proof of Proposition 1

Consider SE(3) as a Riemannian manifold with the metric defined in §2 of
the main paper. As a notational convention, we decompose a vector field X ∈
X (SE(3)), as X = (XR, XT ), where XR ∈ X (SO(3)) and XT ∈ X (R3). The

main idea of the proof is to explicitly compute the matrix form of RicSE(3)(X,Y )
starting from the connection.

From [2], we have that the Levi-Civita connection on SE(3) is given by

∇SE(3)
X Y = (∇SO(3)

XR
YR,∇R3

XT
YT ). (5)

In other words, since we consider SE(3) as a product manifold, the connection
decomposes into the connections of the two component spaces. For R3, one can
verify that the Levi-Civita connection is simply given by

∇R3

XT
YT =

∑
d

XT (yTi)∂d, (6)

i.e., each component of YT is differentiated independently. For SO(3), from [1,
p. 103], we have

∇SO(3)
XR

YR =
1

2
[XR, YR]. (7)

Note that, on SO(3), the Lie bracket between two tangent vectors at a point
R ∈ SO(3) can be computed as

[XR, YR]R = R[RTXR, R
TYR]I , (8)

where [A,B]I , the Lie bracket at the identity, is given by the simple matrix
operation [A,B]I = XY − Y X, where A,B ∈ so(3).

From (5), the curvature tensor on SE(3) is given by

RSE(3)(X,Y )Z =
(
RSO(3)(XR, YR)ZR,RR3

(XT , YT )ZT

)
. (9)

For R3, note that ∇R3

XT
∇R3

YT
ZT =

∑
dX
(
Y (zd)

)
∂d. Then, the curvature tensor

vanishes because, from the definition of [X,Y ] in (1),

RR3

(XT , YT )ZT =
∑
d

Y
(
Z(zd)

)
∂d −

∑
d

X
(
Y (zd)

)
∂d +

∑
d

[X,Y ](zd)∂d = 0.

(10)
This is a simple verification of the fact that R3 has constant zero curvature. For
SO(3), again from [1, p. 103], we have

RSO(3)(XR, YR)ZR =
1

4
[[X,Y ], Z] (11)
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Using (10), the Ricci curvature on SE(3) reduces to

RicSE(3)(X,X) = RicSO(3)(XR, XR) (12)

Combining the definition (3) with (11), we have

Ric(X,X) =
∑
d1

1

8
tr
(
[[XR, E

R
d1

]XR]TER
d1

)
=

1

8

∑
d1

∑
d2

∑
d3

xd2
xd3

tr
(
[[ER

d2
, ER

d1
]ER

d3
]TER

d1

)
, (13)

where ER
d = êd. By direct computation, we have

tr
(
[[ER

d2
, ER

d1
]ER

d3
]TER

d1

)
=

{
2 if d2 = d3, d2 6= d1,

0 otherwise.
(14)

This implies

Ric(Ei − Ej , Ei − Ej) = 0, (15)

Ric(Ei + Ej , Ei + Ej) =

{
1
2 if i = j,

0 otherwise.
(16)

Substituting into the polarization identity (4), we have

RicSO(3)(XR, YR) =
1

2
I3. (17)

This, together with (12), implies the claim.

2.1 Proof for Proposition 3

For simplicity, we will use the variables X and x instead of X
(k)
ij and x

(k)
ij . Note

that we will need to compute gradients of gradients. In other words, if we have a
function f : SE(3) → R, we define ∇f = grad f and we will need to compute
grad∇f . In order to do this, we first fix a vector w ∈ TgiSE(3) and define

f ′ = 〈∇f, w〉 = ḟ(w). Then, we compute f̈(v, w)
.
= 〈grad∇f, v〉 = ḟ ′(v). Since

v and w are arbitrary, we can then extract grad∇f in a similar way to what is
done for the gradient using the definition (with the difference that grad∇f is a
matrix, while grad f is a vector). If f produces values in RD instead of R, we
consider each component eTd f separately and then proceed as before. Going back
to the proof of the proposition, we first define Xc as the point X in the camera
frame:

Xc = RT
i (X − Ti). (18)

Then, we compute its derivative in the direction v.

Ẋc(v) = ṘT
i (X − Ti) +RT

i Ṫi = v̂TRiR
T
i (X − Ti)−RT

i vTi

= X̂cvRi +RT
i vTi

.
= JXv (19)
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For a fixed w, we then compute the d-th component of the derivative of Ẋc(w):

eTd Ẍc(v, w) =
d

dt
eTd Ẋc(w) = eTd ŵ

T
Riv̂

T
RiXc − eTd ŵT

RiR
T
i vTi − eTd v̂TRiR

T
i wTi

= vTRiX̂cêdwRi + vTTiRiêdwRi − vTRiêdR
T
i wTi

.
= vTHXdw (20)

We then pass to the projected image xp = π(Xc). Let P =
[
I2 02×1

]
and

λc = eT3Xc. Then:

xp =
1

λc
PXc (21)

Similarly to what we did for Xc, we compute the two derivatives (note that
xp ∈ R2 instead of R3):

ẋp(v) =
1

λ2c
P (λcI3 −Xce

T
3 )JXw

.
= Jxw (22)

e′d
T
ẍp(v, w) =

d

dt
e′d

T
ẋ(w) =

d

dt

1

λ2c
e′d

T
PMẊc(w)

= − 2

λ3c
eT3 Ẋc(v)eTdMẊc(w) +

1

λ2c
eTd (eT3 Ẋc(v)I3 − Ẋc(v)eT3 )Ẋc(w)

+
1

λ2c

3∑
d′=1

eTdMed′eTd′Ẍc(v, w) =
1

λ2c
vT
(

1

λc
JT
Xe3e

T
dMJX

+ JT
X(e3e

T
d − edeT3 )JX +

3∑
d′=1

(eTdMed′HXd′)

)
w
.
= vTHxdw (23)

Note that we used the fact that ed = PT e′d for d = 1, 2. We can now finally
compute the gradients for our cost

f = ‖xp − x‖2 (24)

ḟ(v) = (xp − x)T ẋp(v) = (xp − x)TJxv (25)

f̈(v, w) = 〈ḟ(w), v〉 = ẋp(v)T ẋp(w) + (xp − x)T ẍp(v, w)

= vT (JT
x Jx +

2∑
d=1

(xp − x)T edHxd)w (26)

We can also compute the gradient with respect to the measured image point x
by evaluating the directional derivative along a direction ẋ = vx and for a fixed
(R, T ).

vTx grad ḟ(w) = −ẋT ẋp(w) = −vTx Jxw (27)

The claim of the proposition then follows by extracting Hijk and Jijk from (26)
and (27), respectively.
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