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1 Statement of Problem

Minimization model. The paper is about solving the following minimization prob-
lem:

min
D,C

1

2
‖Y −DC‖2F + λ‖C‖0 +

α

2
‖D>D − I‖2F , s.t. D ∈ D, C ∈ C, (1)

where D = {D = (d1, . . . ,dm) ∈ Rn×m : ‖dj‖2 = 1, 1 ≤ j ≤ m} and C = {C =
(c>1 , . . . , c

>
m)> ∈ Rm×p, ‖ci‖∞ ≤ M, 1 ≤ i ≤ m}. Let δX denotes the indicate

function of X such that δX (x) = 0 if x ∈ X and +∞ otherwise. Then, the problem (1)
can be re-written as

min
Z:=(C,D)

H(Z) = F (C) +Q(Z) +G(D). (2)

where F (C) = λ‖C‖0 + δC(C),
Q(C,D) = 1

2‖Y −DC‖2F + α
2 ‖D

>D − I‖2F ,
G(D) = δD(D).

(3)

Algorithm 1. Based on the so-called proximal operator [5] defined by

ProxFt (x) := arg min
u

F (u) +
t

2
‖u− x‖2F ,

the proposed hybrid alternating proximal algorithm for solving (2) is summarized as
follows,

c
(k+1)
j ∈ Prox

F (Uk+1
j )+Q(Uk+1

j ,D(k))

µk+1
j

(c
(k)
j ), 1 ≤ j ≤ m,

d
(k+1)
j ∈ Prox

G(Sk+1
j )

λk+1
j

(d
(k)
j − 1

λk+1
j

∇dj
Q(C(k),V k+1

j )),
, 1 ≤ j ≤ m, (4)
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where µk+1
j , λk+1

j ∈ (a, b), a, b are some positive constants and
Uk
j = (c

(k)>
1 , . . . , c

(k)>
j−1 , c

>
j , c

(k−1)>
j+1 , . . . , c

(k−1)>
m )>,

Skj = (d
(k)
1 , . . . ,d

(k)
j−1,dj ,d

(k−1)
j+1 , . . . ,d

(k−1)
m ),

V k
j = (d

(k)
1 , . . . ,d

(k)
j−1,d

(k)
j ,d

(k−1)
j+1 , . . . ,d

(k−1)
m ).

(5)

The parameter sequence λkj is chosen so as to λkj > L(d
(k)
j ) where L(d

(k)
j ) is defined

by
‖∇djQ(C(k), D̄1

j )−∇djQ(C(k), D̄2
j )‖F ≤ L(dkj )‖d1

j − d2
j‖F , (6)

for all d1
j ,d

2
j ∈ Rn where D̄i

j = (d
(k)
1 , . . . ,d

(k)
j−1,d

i
j ,d

(k−1)
j+1 , . . . ,d

(k−1)
m ), i = 1, 2.

Let Z(k) := (C(k),D(k)) be the sequence generated by (4), in the next, we will first de-
fine the critical point for a non-convex function, then show that {Z(k)}k∈N is a Cauchy
sequence and converges to the critical point of (2).

Theorem 1. The sequence {(C(k),D(k))}k∈N generated by the algorithm 1 is a Cauchy
sequence and converges to the critical point of (2).

2 Preliminaries

Definition 1. ([4]) Given the non-convex function f : Rn → R ∪ {+∞} is a proper
and lower semi-continuous function and domf = {x ∈ Rn : f(x) < +∞}.

– For x ∈ domf , its Frechét subdifferential of f is defined as

∂̂f(x) = {u : lim inf
y→x,y 6=x

(f(y)− f(x)− 〈u, y − x〉)/(‖y − x‖) ≥ 0},

and ∂̂f(x) = ∅ if x 6∈ domf .
– The Limiting Subdifferential of f at x is defined as

∂f(x) ={u ∈ Rn : ∃xk → x, f(xk)→ f(x) and uk ∈ ∂̂f(xk)→ u}.

– The point x is a critical point of f if 0 ∈ ∂f(x).

Remark 1. – If x is a local minimizer of f then 0 ∈ ∂f(x).
– If f is the convex function, then ∂f(x) = ∂̂f(x) = {u|f(y) ≥ f(x) + 〈u, y −
x〉,∀y ∈ domf}. In that case, 0 ∈ ∂f(x) is the first order optimal condition.

– The Limiting subgradient of H defined in (2) is given by

∂H(Z) = (∂F (C) +∇CH(Z), ∂G(D) +∇DH(Z)). (7)

The proof of Theorem 1 is built upon Theorem 2.9 in [3].

Theorem 2. ([3]) Assume H(z) is a proper and lower semi-continuous function with
inf H > −∞, the sequence {z(k)}k∈N is a Cauchy sequence and converges to the
critical point of H(z), if the following four conditions hold:
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(P1) Sufficient decrease condition. There exists some positive constant ρ1, such that

H(z(k))−H(z(k+1)) ≥ ρ1‖z(k+1) − z(k)‖2F , ∀k = 1, 2, . . . .

(P2) Relative error condition. There exists some positive constant ρ2 > 0, such that

‖w(k)‖F ≤ ρ2‖z(k) − z(k−1)‖F , w(k) ∈ ∂H(z(k)), ∀k = 1, 2, . . . .

(P3) Continuity condition. There exists a subsequence {z(kj)}j∈N and z̄ such that

z(kj) → z̄, H(z(kj))→ H(z̄), as j → +∞.

(P4) H(z) is a KL function. H(z) satisfies the Kurdyka-Lojasiewicz property in its
effective domain.

3 Proof of Theorem 1

The proof of Theorem 1 is built upon Theorem 2.9 in [3], i.e. Theorem 2. Let Z(k) :=
(C(k),D(k)) denote the sequence generated by the iteration (4). First of all, it can
be seen that the objective function H(Z) = F (C) + Q(Z) + G(D) is the proper,
lower semi-continuous function and bounded below by 0 by the definition (3). Secondly,
the sequence {Z(k)}k∈N generated by iteration (4) is bounded since D(k) ∈ D and
C(k) ∈ C for all k = 1, 2, . . . . In the next, we show one by one that the sequence
{Z(k)}k∈N satisfies the condition (P1)-(P4). Then, Theorem 1 is proved by directly
calling Theorem 2.

3.1 Proof of condition (P1)

Lemma 1. The sequence {Z(k)}k∈N generated by (4) satisfies the following property,
for 1 ≤ j ≤ m,H(T k

j ,D
(k−1)) ≤ H(T k

j−1,D
(k−1))− µk

j

2 ‖c
(k)
j − c

(k−1)
j ‖2F ,

H(C(k),V k
j ) ≤ H(C(k),V k

j−1)− λk
j−L(d

(k)
j )

2 ‖d(k)
j − d

(k−1)
j ‖2F ,

(8)

where {
T k
j = (c

(k)>
1 , . . . , c

(k)>
j , c

(k−1)>
j+1 , . . . , c

(k−1)>
m )>, T

(k)
0 = C(k−1),

V k
j = (d

(k)
1 , . . . ,d

(k)
j ,d

(k−1)
j+1 , . . . ,d

(k−1)
m ), V

(k)
0 = D(k−1).

(9)

Proof. From the fist step in (4), we know

c
(k)
j ∈ arg min

cj∈C
F (c̄kj ) +Q(Uk

j ,D
(k−1)) +

µkj
2
‖cj − c

(k−1)
j ‖2F , (10)

By the optimality of c(k)j in (10), we have

F (ckj ) +Q(T
(k)
j ,D(k−1)) +

µkj
2
‖c(k)j − c

(k−1)
j ‖ ≤ F (ckj−1) +Q(T

(k)
j−1,D

(k−1)).
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Sum G(D(k−1)) on both sides of the above inequality, we have the first inequality in
(8). From the second step in (4), we know

d
(k)
j ∈ arg min

dj∈D
G(Skj ) + 〈∇dj

Q(C(k),V
(k)
j−1),dj − d

(k−1)
j 〉+

λkj
2
‖dj − d

(k−1)
j ‖2F .

The above inequality implies

G(dkj ) + 〈∇dj
Q(C(k),V k

j−1),d
(k)
j − d

(k−1)
j 〉+

L(dkj )

2
‖d(k)

j − d
(k−1)
j ‖2F ≤ G(V k

j−1).

From (6), we have

Q(C(k),V k
j ) ≤Q(C(k),V k

j−1) + 〈∇djQ(C(k),V k
j−1),d

(k)
j − d

(k−1)
j 〉

+
L(dkj )

2
‖d(k)

j − d
(k−1)
j ‖2F .

(11)

Together with (3.1), the second inequality in (8) is satisfied.

Sum up the above inequalities, we can obtain

H(C(k−1),D(k−1))−H(C(k),D(k))

≥
m∑
j=1

(
µkj
2
‖c(k)j − c

(k−1)
j ‖2F +

λkj − L(d
(k)
j )

2
‖d(k)

j − d
(k−1)
j ‖2F ).

(12)

Using the fact that there exist a, b > 0 such that a < µkj , λ
k
j < b and λkj > L(d

(k)
j ), we

can establish the sufficient decreasing property (P1) for {Z(k)}k∈N from (12).

3.2 Proof of condition (P2)

Lemma 2. Let ω(k)
C = (ω1>

C , . . . ,ωm>C )> and ω
(k)
D = (ω1

D, . . . ,ω
m
D) where{

ωjC = ∇cjQ(Z(k))−∇cjQ(T k
j ,D

(k−1))− µkj (c
(k)
j − c

(k−1)
j ),

ωjD = ∇dj
Q(Z(k))−∇dj

Q(C(k),V k
j )− λkj (d

(k)
j − d

(k−1)
j ),

(13)

and T k
j ,V

k
j is defined in (9). Then, ωk := (ω

(k)
C ,ω

(k)
D ) ∈ ∂H(Z(k)) and there exists

a constant ρ > 0, such that

‖ωk‖F ≤ ρ‖Z(k) −Z(k−1)‖F .

Proof. The optimality condition of the first minimization problem in (4) is

∇cjQ(T k
j ,D

(k−1)) + µkj (c
(k)
j −C(k−1)) + ukj = 0, (14)

where ukj ∈ ∂cj
F (T k

j ). Therefore, the following holds

ukj = −(∇cj
Q(T k

j ,D
(k−1)) + µkj (c

(k)
j −C(k−1))) (15)
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Since F (C) = ‖C‖0 =
∑m
j=1 ‖cj‖0, we have ukj ∈ ∂cj

F (C(k)). From (7), it is easy
to know ukj +∇cj

Q(Z(k)) ∈ ∂cj
H(Z(k)). Therefore, we have

∇cj
Q(Z(k))−∇cj

Q(T k
j ,D

(k−1))− µkj (c
(k)
j − c

(k−1)
j ) ∈ ∂cj

H(Z(k)).

Similarly, by optimality condtion of the second minimization problem in (4), we
have

∇dj
Q(C(k),V k

j ) + λkj (d
(k)
j − d

(k−1)
j ) + vkj = 0, (16)

where vkj ∈ ∂dj
G(V k

j ). SinceD =
⋂m
j=1{D : ‖dj‖2 = 1}, we have vkj ∈ ∂dj

G(D(k)).
From (7), we know vkj +∇dj

Q(Z(k)) ∈ ∂dj
H(Z(k)). Consequently, we have

∇djQ(Z(k))−∇djQ(C(k),V k
j )− λkj (d

(k)
j − d

(k−1)
j ) ∈ ∂djH(Z(k)).

Since C(k) ∈ C and D(k) ∈ D for all k ∈ N, the sequence {Z(k)}k∈N is a bounded
sequence. Let {Z(k)} ⊆ Z , the following inequality holds: there exists L > 0, such
that

‖∇ZQ(Z1)−∇ZQ(Z2)‖F ≤ L‖Z1 −Z2‖F , ∀Z1,Z2 ∈ Z, (17)

since Q has lipschitz continuous gradient. Therefore, we have

‖ωjC‖ ≤µ
k
j ‖c

(k)
j − c

(k−1)
j ‖F + ‖∇cjQ(Z(k))−∇cjQ(T k

j ,d
(k−1))‖F

≤b‖c(k)j − c
(k−1)
j ‖F + L(

m∑
i=j

‖c(k)i − c
(k−1)
i ‖+ ‖d(k) − d(k−1)‖F )

=(b+ (m− j)L)‖c(k)j − c
(k−1)
j ‖F + L‖d(k) − d(k−1)‖F

≤((m+ 1)L+ b)‖Z(k) −Z(k−1)‖F

(18)

Similarly, we also have

‖ωjD‖ ≤λ
k
j ‖d

(k)
j − d

(k−1)
j ‖F + ‖∇dj

Q(Z(k))−∇dj
Q(C(k),V k

j )‖F

≤b‖d(k)
j − d

(k−1)
j ‖F + L(

m∑
i=j

‖d(k)
i − d

(k−1)
i ‖F )

≤(mL+ b)‖Z(k) −Z(k−1)‖F

(19)

Therefore, by ωk = (ω
(k)
C ,ω

(k)
D ), we have

‖ωk‖F =

m∑
j=1

‖ωjC‖F + ‖ωjD‖F ≤ ρ‖Z
(k) −Z(k−1)‖F , (20)

where ρ = m((2m+ 1)L+ 2b).
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3.3 Proof of condition (P3)

Lemma 3. The sequence {Z(k)}k∈N satisfies the Continuity condition: there exists Z̄
such that

Z(kj) → Z̄, H(Z(kj))→ H(Z̄), as j → +∞.

.

Proof. Since C(k) ∈ C and D(k) ∈ D for all k ∈ N, the sequence {Z(k)}k∈N is
a bounded sequence and there exists a sub-sequence {Z(kj)}j∈N such that Z(kj) →
Z̄ = (U , D̄). Since Z(kj−1) is also a bounded sequence, without loss of generality,
assume Z(kj−1) → Z̄1. In the next, we first show that Z̄ = Z̄1. By the lemma 1, we
have

H(Z(k−1))−H(Z(k)) ≥ ρ1‖Z(k) −Z(k−1)‖2F ,

where ρ1 > b. So, H(Z(k)) is a decreasing sequence and from the fact that H(Z(0)) <
+∞, H(Z) ≥ 0, we have lim

k→+∞
H(Z(k)) = H̄ ,where H̄ is some constant. Summing

from k = 0 to N , we have

H(Z(0))−H(Z(N)) ≤ ρ1
N∑
k=1

‖Z(k) −Z(k−1)‖2F ,

let N → +∞ in the above, we have

+∞∑
k=1

‖Z(k) −Z(k−1)‖2F ≤
H(Z(0))− H̄

ρ1
< +∞,

which implies lim
k→+∞

‖Z(k) − Z(k−1)‖F = 0. So, for any ε > 0, there exists J ∈ N,

such that for all j > N , ‖Z(kj) − Z(kj−1)‖F < ε/2 and ‖Z(kj) − Z̄‖F < ε/2. It
implies

‖Z(kj−1) − Z̄‖F ≤ ‖Z(kj) −Z(kj−1)‖F + ‖Z(kj) − Z̄‖F < ε.

Consequently, Z(kj−1) → Z̄ as j → +∞.
Let F (C) =

∑m
j=1 fj(cj), where fj(cj) = ‖cj‖0. From the iterative step (4), we

have for all k,

c
(k)
j ∈ arg min

cj∈C
fj(cj) +Q(Uk

j ,D
(k−1)) +

µkj
2
‖cj − c

(k−1)
j ‖2F ,

Let cj = uj in the above inequality, we have

fj(c
(k)
j ) +Q(T k

j ,D
(k−1)) +

µkj
2
‖c(k)j − c

(k−1)
j ‖2F

≤fj(uj) +Q(Uk
j ,D

(k−1)) +
µkj
2
‖uj − c

(k−1)
j ‖2F ,

(21)
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where Uk
j = (c

(k)>
1 , . . . , c

(k)>
j−1 u>j , c

(k−1)>
j+1 , . . . , c

(k−1)>
m )>. Choose k = kj and let

j → +∞ in (21), using the fact that Z(kj−1) → Z̄, we have

lim sup
j→+∞

fj(c
(kj)
j ) ≤ fj(uj).

Since fj is a lower semicontinuous function, we have lim
j→+∞

fj(c
(kj)
j ) = fj(uj). By

the same argument, we have for all j = 1, . . . ,m, lim
j→+∞

fj(c
(kj)
j ) = fj(uj). Since Q

is a smooth function and G(D(k)) = 0, ∀k ∈ N, we have

lim
j→+∞

Q(Z(kj)) = Q(Z̄), lim
j→+∞

G(D(kj)) = G(D̄).

This implies

lim
j→+∞

H(Z(kj)) = lim
j→+∞

F (C(kj)) +Q(Z(kj)) +G(D(kj)) = H(Z̄).

3.4 Proof of condition (P4)

For the property (P4), see [4] for the definition. An important class of functions that
satisfies the Kurdyka-Lojasiewicz property is the so-called semi-algebraic functions [4].

Definition 2. (Semi-algebraic sets and functions [4, 2]) A subset S of Rn is called the
semi-algebraic set if there exists a finite number of real polynomial functions gij , hij
such that

S =
⋃
j

⋂
i

{x ∈ Rn : gij(x) = 0, hij(x) < 0}.

A function f is called the semi-algebraic function if its graph {(x, t) ∈ Rn × R, t =
f(x)} is a semi-algebraic set.

Theorem 3. ([4]) Let f is a proper and lower semicontinuous function. If f is semi-
algebraic then it satisfies the K-L property at any point of domf .

Lemma 4. All the function F (C),Q(Z) and G(D) defined in (3) are semi-algebraic
functions. Moreover, H(Z) = F (C) +Q(Z) +G(D) is the semi-algebraic function.

Proof. ForQ(C,D) = 1
2‖Y −DC‖2F+α

2 ‖D
>D−I‖2F is a real polynomial function,

Q(C,D) is a semi-algebraic function [4].
It is easy to notice that the set D = {Y ∈ Rn×m : ‖dk‖2 = 1, 1 ≤ k ≤

m} =
⋂m
k=1{Y :

∑n
j=1 y

2
kj = 1} is a semi-algebraic set. And the set C = {C ∈

Rm×p|‖ck‖∞ ≤ M} =
⋃M
j=1

⋃p
k=1{C : ‖ck‖∞ = j} is a semi-algebraic set. There-

fore, the indicator functions δD(C) and δD(D) are semi-algebraic functions from the
fact that the indicator function for semi-algebraic sets are semi-algebraic functions [1].

For the function F (C) = ‖C‖0. The graph of F is S =
mp⋃
k=0

Lk , {(C, k) :

‖C‖0 = k}. For each k = 0, · · · ,mp, let Sk = {J : J ⊆ {1, · · · ,mp}, |J | = k}, then
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Lk =
⋃

J∈Sk
{(C, k) : CJc = 0,CJ 6= 0}. It is easy to know the set {(C, k) : CJc =

0,CJ 6= 0} is a semi-algebraic set in Rm×p × R. Thus, F (C) = ‖C‖0 is a semi-
algebraic function since the finite union of the semi-algebraic set is still semi-algebraic.

Consequently, H(Z) is a semi-algebraic function since the finite summation of
semi-algebraic functions are still semi-algebraic [4].
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