LNCS Homepage
ContentsAuthor IndexSearch

Free-Shape Polygonal Object Localization*

Xiaolu Sun, C. Mario Christoudias, and Pascal Fua

CVLab, EPFL, Lausanne, Switzerland
xiaolu.sun@epfl.ch
mario.christoudias@epfl.ch
pascal.fua@epfl.ch

Abstract. Polygonal objects are prevalent in man-made scenes. Early approaches to detecting them relied mainly on geometry while subsequent ones also incorporated appearance-based cues. It has recently been shown that this could be done fast by searching for cycles in graphs of line-fragments, provided that the cycle scoring function can be expressed as additive terms attached to individual fragments. In this paper, we propose an approach that eliminates this restriction. Given a weighted line-fragment graph, we use its cyclomatic number to partition the graph into managebly-sized sub-graphs that preserve nodes and edges with a high weight and are most likely to contain object contours. Object contours are then detected as maximally scoring elementary circuits enumerated in each sub-graph. Our approach can be used with any cycle scoring function and multiple candidates that share line fragments can be found. This is unlike in other approaches that rely on a greedy approach to finding candidates. We demonstrate that our approach significantly outperforms the state-of-the-art for the detection of building rooftops in aerial images and polygonal object categories from ImageNet.

*This work was funded in part by the EU MyCopter project.

LNCS 8694, p. 317 ff.

Full article in PDF | BibTeX


lncs@springer.com
© Springer International Publishing Switzerland 2014