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1 Optimization

The Flip MMC framework proposed in this paper jointly optimizes the model
parameters that describe each cluster, finds the best assignment of videos to
clusters, and refines the tag labeling to reduce the noise in tag annotation. Similar
to MMC, the Flip MMC optimization is a challenging non-convex optimization
problem due to the discrete optimization that assigns videos to clusters and
refines tag labels.

Here this non-convex optimization problem is rewritten in unconstrained
format as:
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w

λ

2
||w||22 +Rw (1)

where Rw is the the risk function defined in the form of an assignment problem
as:

Rw = minyn
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where R′w(yn) computes the “mis-clustering” cost of assigning the n-th video to
the cluster yn using:
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t′n
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In Eq. 3 annotated tags change to t′n such that the error of assigning the video
xn to yn is minimal while number of changes are being penalized by ∆′t′n,tn .

In order to address the unconstrained optimization problem in Eq. 1, we de-
velop a coordinate descent-style approach shown in Algorithm 1. This algorithm
alternates between finding the parameters of each cluster (w) and finding an
assignment of videos to clusters. The algorithm mainly consists of three steps
performed iteratively. First, “mis-clustering” cost is computed in Eq. 3, and then
it is used for computing risk function by solving the assignment problem in Eq. 2.
Finally, the model parameters are updated given the risk values. The following
explains these steps in detail.
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Algorithm 1 Flip MMC Optimization

1: Input : {xn, tn}n=Nn=1 , K, ε
2: Output : parameters w
3: Initialize w1

4: for τ ← 1 to τmax do
5: for n← 1 to N do
6: for yn ← 1 to K do
7: Compute R′w(yn) using Eq. 3
8: end for
9: end for

10: Solve the assignment problem in Eq. 2
11: compute ∂Rw

∂w

∣∣
wτ

, from Eq. 4

12: Compute [wτ+1, w
∗
τ , gap], from [1], Alg. 1

13: if gap ≤ ε or τ == τmax then
14: return w∗τ
15: end if
16: end for

Computing mis-clustering cost: In this step, the mis-clustering costs for
each video and cluster, R′w(yn) is computed by solving the integer min-max
problem in Eq. 3. Here, the heuristic proposed in Vahdat and Mori [2] is used to
find an approximate solution to this problem. In a nutshell, the heuristic solves
an approximation of the min-max problem in two steps. First, an approximate
solution to the inner maximization is computed and the refined tag labels are
found by solving the outer minimization given the approximate solution of inner
maximization. Second, the exact inner maximization is computed for the fixed
refined tag labels from the previous step. Due to the simple structure of the
loss function and clustering model, the min-max optimization can be solved
efficiently by performing the so-called loss augmented inference [3] twice. In this
work, given decomposable hamming loss function and our simple model, loss
augmented inference becomes inferring the unary potential functions on tags
that can be done efficiently for each tag independently.

Note that the refined tag label, t′n is found for each cluster separately. This
enables us to flexibly find cluster-specific tags while making sure that refined tag
labels and the annotated tags are not very different.

Risk function computation: Given the mis-clustering costs for all clusters
and video, the assignment problem in Eq. 2 becomes a linear integer program-
ming problem. This problem in general is an NP-hard problem, and here an
approximated solution is found using linear programming (LP) relaxation, using
GNU Linear Programming Kit (GLPK).

Updating w: The optimization problem in Eq. 1 is a non-convex optimiza-
tion problem. For solving this problem, we use the NRBM approach of Do and
Artières [1], which is a non-convex extension of the cutting plane algorithm.
This approach starts from an initial w, and at each iteration it creates a piece-
wise linear approximation of the objective function by adding a cutting plane
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at the optimum discovered from the previous iteration. The approach requires
the computation of the risk function and its gradient at the current optimum,
which can be efficiently computed for our linear clustering model given the op-
timal solutions for the risk function. Assuming that from Eq. 2 the n-th video
is assigned to y∗n, its tags are refined to t∗n, and the most-violated labels in the
inner maximization in Eq. 3 are y∗∗n and t∗∗n , the gradient is computed simply
using:

∂Rw
∂w

=

N∑
n=1

φ(xn, t
∗∗
n , y

∗∗
n )− φ(xn, t

∗
n, y
∗
n) (4)

The final assignment of videos to clusters is produced by solving the assignment
problem in Eq. 2 using the optimal parameters, w∗τ obtained in Algorithm 1.
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