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This document contains supplemental material to our ECCV 2014 paper.

Section 1 shows that our method outperforms the the state-of-the-art Probabilis-
tic Hierarchical Trajectory Matching (PHTM) method from [2] when comparing with
the predll measure. Section 2 contains more plots for the prediction error that were
omitted from our paper due to page constraints.

Recall that the prediction error, error, is the Euclidean distance between the true
future position, and the expected future position predicted by a model (i.e. the ex-
pected value under the predicted future state distribution). The predictive log-likelihood,
predll, is the log likelihood of the true future position under the predicted future state
distribution. Thus, this measure is large when both the true position is close to the ex-
pected position (i.e. high accuracy) and the variance is low (i.e. high precision).

1 Comparison of predll with PHTM

Table 1 in our paper submission shows the predictive log likelihood predll (Eq. (22)
in the submission) of the model variations at tp = 16 time steps (∼ 1 s) in the future,
averaged over the second up to the moment that the pedestrian reaches the curb. For
completeness, Table 1 here includes the predictive log likelihood for the PHTM model
too, in the rightmost column.

In the PHTM model, the predictive distribution P tp|t(Xt+tp) for state Xt+tp at

time t is represented by a set of particles {X(s)
t+tp}. Each particle is associated with a

trajectory snippet from training trajectories in the database, and the future position of
the particle is obtained by following the path the trajectory that best matches the snippet
(see [2] for a more detailed description of their approach). To compute the predictive
likelihood predll(tp|t) of the PHTM model shown in the table, we used kernel density
estimation. A Gaussian kernel was placed on each particle in {X(s)

t+tp}, and weighted by
the particle weights w(s). Bandwidths for kernels were estimated using the data-driven
linear diffusion approach proposed by [1] in leave-one-out cross-validation.

The results in Table 1 here show that PHTM is good in predicting stopping motion,
similar to our proposed model, but the predictive likelihoods for crossing pedestrians
are low compared to our proposed model. We observe from the output of PHTM that
on the stopping sub-scenario, almost all predicted positions come from tracks in the
database with stopping motion. This results in an accurate predictive distribution with
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Table 1. Prediction log likelihood of the GT pedestrian position for tp = 16 frames (∼ 1 s) ahead,
for different sub-scenarios (rows) and models (columns), for TTE ∈ [−15, 0]. The first four sub-
scenarios contain “normal” pedestrian behavior. The fifth case is anomalous (lower likelihood is
better). Model variations (best SLDS variant marked in bold): full context (SC+HSV+AC), no
curb (SC+HSV), only head (HSV), only criticality (SC), no context (SLDS), KF (LDS). This
table is the same as Table 1 of our ECCV paper, except for the last columns with the results for
the PHTM model.

Sub-scenario SC+HSV+AC SC+HSV HSV SC SLDS LDS PHTM
non-critical, vehicle not seen, crossing -0.61 -0.53 -0.52 -0.59 -0.59 -1.90 -0.78
non-critical, vehicle seen, crossing -0.53 -0.45 -0.46 -0.47 -0.49 -1.93 -0.75

critical, vehicle not seen, crossing -0.48 -0.34 -0.17 -0.59 -0.33 -1.88 -0.97
critical, vehicle seen, stopping -0.33 -0.70 -1.13 -0.80 -1.26 -1.88 -0.38
critical, vehicle seen, crossing -0.90 -0.27 -0.15 -0.25 -0.13 -1.88 -0.80

low variance, and therefore high likelihood (i.e. -0.38). On the crossing sub-scenarios,
however, the predicted positions are spread out, and the distribution accordingly has
high variance. We found that PHTM matches snippets to tracks with many different
walking speeds and variations in the successor parts of the trajectories. On the other
hand, our approach uses linear dynamics to estimates walking speed, and can handle
both stopping and crossing. Furthermore, the PHTM model has no additional context
information and can only differentiate between the two motion types. Indeed, the table
shows that the predictive log likelihood of PHTM is low for all crossing sub-scenarios.

In summary, our proposed approach outperforms the state-of-the-art PHTM method
in all sub-scenarios when comparing the predictive log-likelihoods for ∼ 1 s in future,
especially on sub-scenarios with crossing pedestrians.

2 Comparison of model variations

In Fig. 3 in our paper, the plots in the right column illustrated the prediction error, for
∼ 1 s in the future, of the model variations on the two critical scenarios. Each plot
shows the mean and 1 std. dev. range (over all sequences in a particular sub-scenario)
of a model’s prediction error over time. For completeness, Figure 1 here shows plots of
the prediction error of all normal scenarios (both non-critical and critical).

From the two figures of the non-critical situations (top-row), we see that our model
and its variations perform all very similar, and make better predictions than the standard
constant velocity Kalman Filter with acceleration noise. In the non-critical case where
the pedestrian sees the vehicle and crosses (top right), one can observe that our proposed
approach has a slightly higher error than the variations, which was also visible in the
slightly lower likelihood for this case in Table 1. The reason for this is that in a few
sequences, at some moments before the pedestrian reaches the curb, the model does find
it probable that the situation is critical. Therefore, it is also probable that the pedestrian
will stop, and the predictive positional distribution contains most mass at the curbside.
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non-critical, vehicle not seen, crossing non-critical, vehicle seen, crossing

critical, vehicle not seen, crossing critical, vehicle seen, stopping

Fig. 1. Predictive error of all normal scenarios, similar to the right column of Fig. 3 in our paper.
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