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This short document lists and works out some of the supplemental material
to accompany the ECCV 2014 paper titled “A New Variational Framework for
Multiview Surface Reconstruction”.

1 Gallery of reconstructions

The subdirectories of this folder contain image sets, with rendered depth images
for one of each set, showcasing the performance of this surface reconstruction
method for a variety of situations. Also included in each directory is a texture
mapped Maya obj file; these are meshes viewable in many tools, e.g. Meshlab.
The table below lists these directories, with some extra information.

Name α Time, s Lens Peculiarities

MtHood 1 764 Narrow Large baseline, obliqueness, contrast

Downtown 0.05 1072 Normal Small baseline, glare, depth range

Bridge 0.3 494 Narrow Large baseline, clutter, contrast

Statue 0.4 223 Narrow Small baseline, focal blur, contrast

Entrance 0.3 684 Narrow Focal blur, contrast, depth range

The source images are all property of Urban Robotics, Inc.1 (not for reuse).
They have been compressed at 80% JPEG quality to save space, 90% quality
was used for all reconstructions; furthermore, all are undistorted.

2 Surface resolving power derivation

In the paper, a quantity termed “surface resolving power” was introduced, an
infinitesimal ratio of projected area (pixels2) to physical area. One way to derive
this will be presented here.

Consider a 3D point X lying on a piecewise differentiable surface with pro-
jection u. The goal is to find a way to measure surface resolving power, in other
words, a “pixels per area” measure. This may be understood as the reciprocal of
the ratio of a small area element ∆A around X to its projected pixel area ∆Q.
To simplify and make “small” precise, the limiting case will be used:

Surface resolving power = lim
∆A→0

∆Q

∆A
=

dQ

dA
. (1)

1 www.urbanrobotics.net
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To derive this quantity in terms of that which is measurable, consider the
outward unit surface normal n̂ at X, which may be expressed in various ways, the
best of which depends on surface representation. Two orthogonal tangent vectors
t̂1 and t̂2 can also be built, arbitrary due to a rotation around the normal.

X
u

Fig. 1. The projection of a small surface element around X onto a view.

With this information, the area element may be expressed in terms of a side
length ∆s and the tangent vectors:

∆A = ∆s2 = |(∆st̂1)× (∆st̂2)| (2)

which reveals a corresponding pixel area element:

∆Q = (∆sq1)× (∆sq2) (3)

where the cross product of 2D vectors is understood as same but 3D with zero
z components, yielding a single z value. qi is the projection of a tangent vector:

qi = u(X + ∆st̂i)− u(X) (4)

where u(X) is the projection of X, a function mapping R3 → R2.
Now, if u(X) is differentiable, Taylor’s theorem may be used to re-express a

projected tangent:
qi = ∆s∇u(X)̂ti +O(∆s2) . (5)

The ratio of the area elements is now fully defined. Taking the limit yields:

dQ

dA
= (∇ut̂1)× (∇ut̂2) . (6)

This form is undesirable in that the tangent vectors appear, which take a little
more work to evaluate than the normal due to their ambiguity. Expanding the
cross product and rearranging yields the more useful form:

dQ

dA
= −n̂ ·

(
∇u×∇v

)
. (7)

Note that if this quantity is negative, the surface element is not viewable.


