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1 Detection

1.1 PR Curves - Our 19 class task

In this subsection, we present the Precision Recall curves on the NYUD2 test set,
comparing the output from our object detectors with that from RGB DPMs [I],
and RGB-D DPMs as described in Section 3.3 in the main paper. The Precision
Recall curves are plotted in Figure

1.2 Object Detection Visualizations - Our 19 class task

We provide more visualization of the detections from our detectors: bed (Fig-
ure , chair (Figure , sofa (Figure7 table (Figure@, toilet (Figure 7)), lamp
(Figure[8), pillow (Figure[d), counter (Figure[10)), night-stand (Figure[L1)), televi-
sion (Figure[12)), monitor (Figure[L3)), garbage-bin (Figure[14)), door (Figure[15)),
desk (Figure [16)), bookshelf (Figure [17)), dresser (Figure , box (Figure ,
bathtub (Figure and sink (Figur. We uniformly sample 30 detections
among the top K detections (K = number of instances for that class). We color
code the detection box as true positive (green), duplicate detection (blue), mis-
localization (yellow) and confusion with other category (red). We also mark the
inferred instance mask in magenta.

1.3 PR Curves - Lin et al.’s [5] 21 class task

In this subsection, we compare our object detectors with that of Lin et al. [5].
Lin et al. produce only a few operation points on the Precision Recall curve
(corresponding to 8, 15 or 30 region proposals per image). They also use a
different set of categories, and combine ‘semantically similar’ categories into
a single category (we list the category groups in Table . They produce 3D
detections, but also have a region associated with each 3D detection, which we
use to obtain a 2D detection (by putting a tight bounding box around the region
in the image space). We then benchmark the output by assigning the detections
as being true positives and false positives, and compute precision and recall for
each of their setting (of 8, 15, and 30 region proposals per image), and report
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the I measure in Table[I} We also report the F,.« measure from our approach,
and plot our Precision Recall curves along with their three operating points in
Figure [2l We retrained our detector linear SVMs for the task being considered
here (but still using features from the network that was finetuned for our 19
class task).

1.4 RGB-D DPMs Baseline

In this subsection, we present empirical evidence for our RGB-D DPMs baseline
as described in Section 3.3 in the main paper. Here, we work with the B3DO
dataset [3], which has objects in more uncontrolled settings and includes furni-
ture objects like chairs which is our interest in this work. We compare against
previously published methods on this dataset [3], and [4], and provide our RGB-
D DPM results in Table

2 Instance Segmentation

2.1 List of Feature Channels

We use the following feature channels: z, y coordinate of the pixel in the 50 x
50 mask, depth, depth corrected by the scale of the detection (we do this by
subtracting the median depth in the detection box from the raw depth), height
above ground, angle with gravity, azimuth, the N,, N,, N, components for the
normal, Luv color channels, and if the pixel was missing in the original input
depth map. Also, in addition to question involving difference in values, we also
ask questions about angle between normals at a pair of points.
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F@8 1Ql15 1@30 |Fmax| AP
Lin et al. Lin et al. Lin et al.| Our | Our

] ] B
mean 16.6 17.9 18.1 43.7 | 35.8
bathtub 0.0 6.2 20.5 50.0 | 44.4
bed 30.3 31.2 28.8 66.5 | 67.5
blinds 23.6 19.2 20.5 42.9 | 32.7
board 16.7 15.6 15.6 35.0| 25.9
cabinet 20.6 18.8 18.4 36.2 | 27.8
chair 23.0 22.8 22.8 48.6 | 43.5
chest 19.7 22.4 21.6 33.226.1
counter 19.7 22.2 20.1 51.9 | 43.8
curtain 18.2 16.5 15.1 38.2 | 25.0
headboard 14.0 16.7 8.5 36.4| 21.0
mantel 0.0 13.3 0.0 40.0 | 29.5
microwave 10.0 19.7 23.7 36.9 | 28.5
monitor 24.6 22.8 25.1 62.1| 59.1
oven 5.4 15.8 11.1 50.0 | 41.0
printer 4.9 0.0 0.0 30.6 | 23.8
refrigerator 6.9 6.1 16.4 30.2 | 21.8
shelf 16.3 17.4 15.3 29.6 | 19.2
sink 17.8 21.0 19.0 47.0 | 36.1
sofa 22.3 23.9 25.4 58.2 | 554
table 16.7 17.7 17.3 40.1| 33.3
toilet 37.9 26.3 35.6 54.2 | 46.8

Table 1. F1 scores for object detection on the 21 class task as introduced
by Lin et al. [5]: We report the F7 measure at the three operating points using the
precomputed results from Lin et al. [5] (see Section , and the best operating point
from our approach Fax.
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Class Name | Constituent Categories

bathtub bathtub

bed bed, mattress, bunk bed

blinds blinds, reflection of window shutters

board cork board, whiteboard, blackboard, classroom board,
poster board, board, display board

cabinet cabinet, storage space

chair chair, stacked chairs, plastic chair

chest stand, night stand, dresser, drawer, tv stand, chest,
desk drawer, storage chest, desser

counter counter, kitchen island

curtain curtain, shower curtain, door curtain

headboard headboard

mantel mantel, fireplace, mantle
microwave microwave, toaster oven
monitor monitor, television

oven oven

printer printer, fax machine

refrigerator | refridgerator

shelf shelves, mail shelf, bookshelf, spice rack, toy shelf,
toys shelf, storage shelvesbooks, toys rack,

storage rack, shelf frame

sink sink

sofa sofa, furniture

table table, desk, coffee table, table runner, game table,
foosball table, pool table, ping pong table

toilet toilet

Table 2. Category groups as used by Lin et al. [5]

DPM Janoch et al. Janoch et al. Kim et al.
m [3]-Prn [3]-Rscr M RGB-D DPMs
mean 28.2 29.7 30.7 31.2 39.4
bottle 10.1 10.4 10.1 10.1 21.9
bowl 37.8 38.8 38.0 45.4 47.8
chair 16.8 21.8 23.0 17.1 39.9
cup 30.9 33.6 35.6 38.3 47.0
keyboard | 22.3 24.2 25.0 25.6 25.7
monitor 66.8 64.8 66.7 68.2 64.9
mouse 22.8 25.2 27.6 25.4 48.8
phone 18.0 19.2 19.7 19.8 19.4

Table 3. Performance on B3DO: Comparison of our RGB-D DPM baseline with
[3], [4] on B3DO dataset [3].



Supplementary Material: Learning Rich Features from RGB-D Images 5

Object Detection PR curve for bathiub, Object Detection PR curve for bed Object Detection PR curve for bookshelf Object Detection PR curve for box Object Detection PR curve for
I I

RGE DPV: AP =09 [RGB DPM: AP =276
RGB R-CNN: AP = 169)

Precision
Precision

% 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0102 03 04 05 06 07 08 09 1 001 02 03 0405 06 07 08 09 0702 03 04 05 06 07 08 09
Recall Recall Recall Reall Recall

Object Detection PR curve for counter bject I Object Detcction PR curve for door Object Detection PR carve for dress Object Detection PR curve for garbage-bin
I i

Precision
Precision

T

.

G102 03 04 03 06 07 08 09
Recall

0T 02 03 0405 06 07 08 09 0 01 02 03 04 05 06 07 08 09 1 0102 03 04,05 06 07 05 09 1 0T 02 03 0405 06 07 08 09
Recall Recall Recall Recall

Object Detection PR curve foslamp Object cet Dete ¢ Object Detection PR curve for pillow Object Detection PR curve fo sink.
[ |

Precision

G102 03 04 05 06 07 08 09 1 0102 03 04 05 06 07 08 09 1 0102 03 04 05 06 07 0% 09 1 G702 03 04 05 06 07 08 09 1
Recall Recall Recall Recall

Object Detection PR curve forsofa Object able

0702 03 04 05 06 0.7 08 09 1 0102 03 04 05 06 07 08 09 1 0102 03 0405 06 07 05 09 1 G102 03 04_05 06 07 08 09 1
Recall Recall Recall Recal

Fig. 1. Precision Recall curves for Object Detection task on NYUD2: We plot
the Precision and Recall curves for two baselines, RGB DPMs (blue), RGB R-CNN from
[2] (green), RGB-D DPMs (red) and our (black) approach, for the object categories we
study in this paper: bathtub, bed, bookshelf, box, chair, counter, desk, door, dresser,
garbage-bin, lamp, monitor, night-stand, pillow, sink, sofa, table, television and toilet.
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Fig. 2. Precision Recall curves comparing with Lin et al. [5]: We plot the
Precision and Recall curves for our approach (black) and show the various points of
operation as picked by Lin et al. in [5] (red, blue, green for 8, 15 and 30 region proposals
for each image). For this Figure, we use the categories proposed by Lin et al. in [5] (Lin
et al. group certain categories together, see Table , and benchmark for the task of
2D detection that we study in this paper. We use their publicly available results, and
use a tight bounding box around their proposed region as the detection box.
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Fig. 3. Output of our bed detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories

(

). the mask for each detection in magenta.

e Detié 007 st 7] ' ed Dt 02 7t 167

red). We also mark
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Fig. 4. Output of our chair detector: We visualize 30 detections uniformly sampled

from the first numlInsts detections. The examples are laid out row-wise with 3 examples

per row. The first image has the ground truth bounding box and the second image

shows the output from the object detector color coded as follows: true positive (green),

duplicate detection (blue), mis-localization (yellow) and confusion with other categories
red). We also mark

1
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Fig. 5. Output of our sofa detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories
(red). We also mark the mask for each detection in magenta.

,” i Joofs Det 000 #nst 237

o3 Dt 139 NSt 237
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10 Saurabh Gupta, Ross Girshick, Pablo Arbeldez, Jitendra Malik

Fig. 6. Output of our table detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories
(red). We also mark the mask for each detection in magenta.

] 556 Det 001 APt 312 Do 012 #fst 310

table Dt 73 #St 3T
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Fig. 7. Output of our toilet detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories

(red). We also mark the mask for each detection in magenta.
e e e
| |

ioiet Dt Ot #inst 34 ioiet Det_ 072 st 34 1 et Dt 07 Ainsi 34

ioiet Deti O st 34
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Fig. 8. Output of our lamp detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories
(red). We also mark the mask for each detection in magenta.
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Fig. 9. Output of our pillow detector: We visualize 30 detections uniformly sam-

pled from the first numliInsts detections. The examples are laid out row-wise with 3

examples per row. The first image has the ground truth bounding box and the second

image shows the output from the object detector color coded as follows: true positive

(green), duplicate detection (blue), mis-localization (yellow) and confusion with other

(red). We also mark the mask for each detection in magenta.
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Fig.10. Output of our counter detector: We visualize 30 detections uniformly
sampled from the first numlInsts detections. The examples are laid out row-wise with
3 examples per row. The first image has the ground truth bounding box and the second
image shows the output from the object detector color coded as follows: true positive
(green), duplicate detection (blue), mis-localization (yellow) and confusion with other
red). We also mark the mask for each detection in magenta.

ounter Detf 001 #nst 100

categories (

Founter Det 1 st 190
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Fig. 11. Output of our night-stand detector: We visualize 30 detections uniformly
sampled from the first numlInsts detections. The examples are laid out row-wise with
3 examples per row. The first image has the ground truth bounding box and the second
image shows the output from the object detector color coded as follows: true positive
(green), duplicate detection (blue), mis-localization (yellow) and confusion with other
categories (red). We also mark the mask for each detection in magenta.

piht sond Det Q01 et 7 S ) it stand et 004 #inst 79

fich-stan Dst 003 st 79

Figristand Det# 025 st 79 = | 5 g ch-siand Det# 031 #hst 79

fi-sfand Deté: 039 #inst 79

figricstand Det 04 st 73 tand Deti 047 #st 73

fich-stard Det 067 st 79 fiofistand Deti 063 #inst 73

stand Detéé 071 #st 79

ich-stand Det 076 st 73 i stand Deti 070 st 79



16 Saurabh Gupta, Ross Girshick, Pablo Arbeldez, Jitendra Malik

Fig. 12. Output of our television detector: We visualize 30 detections uniformly
sampled from the first numlInsts detections. The examples are laid out row-wise with
3 examples per row. The first image has the ground truth bounding box and the second
image shows the output from the object detector color coded as follows: true positive
(green), duplicate detection (blue), mis-localization (yellow) and confusion with other
categories (red)

@evision Dt 020 st 52
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Fig.13. Output of our monitor detector: We visualize 30 detections uniformly
sampled from the first numlInsts detections. The examples are laid out row-wise with
3 examples per row. The first image has the ground truth bounding box and the second
image shows the output from the object detector color coded as follows: true positive
(green), duplicate detection (blue), mis-localization (yellow) and confusion with other
categorles (red) We also mark the mask for each detection in magenta

oriior Detf 054 st

oriior Det 074 st 87
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Fig. 14. Output of our garbage-bin detector: We visualize 30 detections uniformly
sampled from the first numlInsts detections. The examples are laid out row-wise with
3 examples per row. The first image has the ground truth bounding box and the second
image shows the output from the object detector color coded as follows: true positive
(green), duplicate detection (blue), mis-localization (yellow) and confusion with other
categories (red). We also mark the mask for each detection in magenta.
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Fig. 15. Output of our door detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories

(red). We also mark the mask for each detection in magenta.
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Fig. 16. Output of our desk detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories
(red). We also mark the mask for each detection in magenta.
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Fig.17. Output of our bookshelf detector: We visualize 30 detections uniformly
sampled from the first numlInsts detections. The examples are laid out row-wise with
3 examples per row. The first image has the ground truth bounding box and the second
image shows the output from the object detector color coded as follows: true positive
(green), duplicate detection (blue), mis-localization (yellow) and confusion with other

categories (red). We also mark the mask for each detection in magenta.
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Fig. 18. Output of our dresser detector: We visualize 30 detections uniforn
sampled from the first numlInsts detections. The examples are laid out row-wise with
3 examples per row. The first image has the ground truth bounding box and the second
image shows the output from the object detector color coded as follows: true positive
(green), duplicate detection (blue), mis-localization (yellow) and confusion with other
categories (red). We also mark the mask for each detection in magenta.
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Fig. 19. Output of our box detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories
(red). We also mark the mask for each detection in magenta.
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Fig. 20. Output of our bathtub detector: We visualize 30 detections uniformly
sampled from the first numlInsts detections. The examples are laid out row-wise with
3 examples per row. The first image has the ground truth bounding box and the second
image shows the output from the object detector color coded as follows: true positive
(green), duplicate detection (blue), mis-localization (yellow) and confusion with other
categories (red). We also mark the mask for each detection in magenta.
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Fig. 21. Output of our sink detector: We visualize 30 detections uniformly sampled
from the first numlInsts detections. The examples are laid out row-wise with 3 examples
per row. The first image has the ground truth bounding box and the second image
shows the output from the object detector color coded as follows: true positive (green),
duplicate detection (blue), mis-localization (yellow) and confusion with other categories
(red). We also mark the mask for each detection in magenta.
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