
Expanding the Family of Grassmannian Kernels:
An Embedding Perspective

Mehrtash T. Harandi, Mathieu Salzmann, Sadeep Jayasumana,
Richard Hartley, and Hongdong Li

Australian National University, Canberra, ACT 0200, Australia
NICTA, Locked Bag 8001, Canberra, ACT 2601, Australia?

1 Proof of Length Equivalence

Here, we prove Theorem 2 from Section 3, i.e., the equivalence up to a scale
of
√

2 of the length of any given curve under the Binet-Cauchy distance δbc
derived from the Plücker embedding and the geodesic distance δg. The proof of
this theorem follows several steps. We start with the definition of curve length
and intrinsic metric. Without any assumption on differentiability, let (M, d) be
a metric space. A curve in M is a continuous function γ : [0, 1]→M and joins
the starting point γ(0) = x to the end point γ(1) = y.

Definition 1. The length of a curve γ is the supremum of L(γ; {ti})
over all possible partitions {ti}, where 0 = t0 < t1 < · · · < tn−1 < tn = 1 and
L(γ; {ti}) =

∑
i d (γ(ti), γ(ti−1)).

Definition 2. The intrinsic metric δ̂(x, y) on M is defined as the infimum of
the lengths of all paths from x to y.

Theorem 1 ( [2]). If the intrinsic metrics induced by two metrics d1 and d2
are identical up to a scale ξ, then the length of any given curve is the same under
both metrics up to ξ.

Theorem 2 ( [2]). If d1(x, y) and d2(x, y) are two metrics defined on a space
M such that

lim
d1(x,y)→0

d2(x, y)

d1(x, y)
= 1. (1)

uniformly (with respect to x and y), then their intrinsic metrics are identical.

Therefore, here, we need to study the behavior of

lim
δ2g(X,Y)→0

δ2bc(X,Y)

δ2g(X,Y)

to prove our theorem on curve length equivalence.
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Proof. Since sin(θi)→ θi for θi → 0, we can see that

lim
δg(X,Y)→0

δ2bc(X,Y)

δ2g(X,Y)
= lim
θi→0

2− 2
∏p
i=1(1− sin2 θi)∑p
i=1 θ

2
i

= lim
θi→0

2− 2
∏p
i=1(1− θ2i )∑p
i=1 θ

2
i

= lim
θi→0

2− 2(1−
∑p
i=1 θ

2
i )∑p

i=1 θ
2
i

= 2 .

This, in conjunction with Theorem 1, concludes the proof. ut

2 Additional Experiment

We performed an additional experiment on body-gesture recognition using the
UMD Keck dataset [3]. To this end, we consider the problem of kernel sparse
coding on the Grassmannian which can be formulated as

min
y

∥∥∥φ(X)−
∑N

j=1
yjφ(Dj)

∥∥∥2 + λ‖y‖1 , (2)

where Dj ∈ G(p, d) is a dictionary atom, X ∈ G(p, d) is the query and y is the
vector of sparse codes. In practice, we used each training sample as an atom
in the dictionary. Note that, as shown in [1], (2) only depends on the kernel
values computed between the dictionary atoms, as well as between the query
point and the dictionary. Classification is then performed by assigning the label
of the dictionary element Di with strongest response yi to the query.

The UMD Keck dataset [3] comprises 14 body gestures with static and dy-
namic backgrounds (see examples in Figure 1). The dataset contains 126 videos
from static scenes and 168 ones from dynamic environments. Following the ex-
perimental protocol used in [4], we first extracted the region of interest around
each gesture and resized it to 32× 32 pixels. We then represented each video by
a subspace of order 6, thus yielding points on G(6, 1024).

Table 1 compares the performance of our kernels with that of k2bc and kp. Note
that our kernels outperform the baselines in both the static and dynamic settings.
The maximum accuracy is obtained by kl,p for the static scenario (99.2%), and by
kbi,p for the dynamic one (99.1%). For the same experiments, the state-of-the-art
solution using product manifolds [4] achieves 94.4% and 92.3%, respectively.

Fig. 1: Sample images from the UMD Keck body-gesture dataset [3].
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Table 1: Body-gesture recognition. Accuracies on UMD Keck [3] using kernel
sparse coding.

kernel k2
bc kp,bc kr,bc kl,bc kbi,bc klog,bc

Static 84.1%± 3.6 88.1%± 6.0 90.5%± 4.7 91.3%± 7.7 93.7%± 3.6 87.3%± 3.6
Dynamic 90.2% 92.0% 93.8% 94.6% 94.6% 92.9%

kernel kp kp,p kr,p kl,p kbi,p klog,p

Static 88.9%± 8.4 94.4%± 6.0 97.6%± 4.1 99.2%± 1.3 96.0%± 3.6 92.9%± 2.4
Dynamic 91.1% 92.0% 98.2% 98.2% 99.1% 97.3%
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